Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Haladu, Shamsuddeen A.

  • Google
  • 2
  • 3
  • 37

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Synthesis, characterization and electrochemical evaluation of anticorrosion property of a tetrapolymer for carbon steel in strong acid media27citations
  • 2017Synthesis and characterization of cyclic cationic polymer and its anti-corrosion property for low carbon steel in 15% HCl solution10citations

Places of action

Chart of shared publication
Ali, Shaikh A.
2 / 5 shared
Mohammed, Abdul Rashid I.
1 / 2 shared
Umoren, Saviour A.
2 / 40 shared
Chart of publication period
2019
2017

Co-Authors (by relevance)

  • Ali, Shaikh A.
  • Mohammed, Abdul Rashid I.
  • Umoren, Saviour A.
OrganizationsLocationPeople

article

Synthesis and characterization of cyclic cationic polymer and its anti-corrosion property for low carbon steel in 15% HCl solution

  • Ali, Shaikh A.
  • Umoren, Saviour A.
  • Haladu, Shamsuddeen A.
Abstract

<p>A new cyclic cationic polymer (CCP) bearing bis-3-phosphorylpropyl pendants was synthesized using chain-growth polymerization technique with ammonium persulphate (APS) as initiator. The synthesized polymer was characterized using FTIR, <sup>1</sup>H NMR and <sup>13</sup>C NMR techniques. The corrosion inhibition performance evaluation of the newly synthesized polymer for low carbon steel in 15% HCl was carried out using weight loss measurements at 25 - 60 °C, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP) and linear polarization resistance (LPR) techniques. The effect of addition of small amounts (5 mM) of ZnCl<sub>2</sub> and KI on the corrosion inhibition performance of CCP was also assessed. Results obtained indicate that CCP acts as an inhibitor for low carbon steel corrosion in the aggressive acid environment. Inhibition efficiency increased slightly with increasing CCP concentration. Also, inhibition efficiency was found to decrease with increase in temperature. Addition of ZnCl<sub>2</sub> and KI to CCP has profound effect on the corrosion inhibition performance, which was more pronounced with KI compared to ZnCl<sub>2</sub>. Corrosion protection efficiency followed the trend CCP + KI &gt; CCP + ZnCl<sub>2</sub> &gt; CCP. The enhanced corrosion inhibition of CCP on addition of ZnCl2 and KI is due to synergistic effect as confirmed from the calculated synergistic parameter which was found to be greater than unity. Inhibition of low carbon steel corrosion in 15% HCl occurs by virtue of physical adsorption of CCP onto the steel surface which can be approximated by Langmuir adsorption isotherm model. The SEM/EDS images confirm the adsorption of CCP to form protective film on the low carbon steel surface.</p>

Topics
  • surface
  • polymer
  • Carbon
  • corrosion
  • scanning electron microscopy
  • steel
  • electrochemical-induced impedance spectroscopy
  • Energy-dispersive X-ray spectroscopy
  • Nuclear Magnetic Resonance spectroscopy
  • appearance potential spectroscopy