People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zybała, Rafał
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Mg nanostructures with controlled dominant c-plane or m-plane facets by DC magnetron sputter depositioncitations
- 2024Using SPS Sintering System in Fabrication of Advanced Semiconductor Materials
- 2023Microstructural Evolution of Ni-SiC Composites Manufactured by Spark Plasma Sinteringcitations
- 2021Review of rapid fabrication methods of skutterudite materialscitations
- 2019Microstructure and thermoelectric properties of p and n type doped β-FeSi2 fabricated by mechanical alloying and pulse plasma sinteringcitations
- 2018Skutterudite (CoSb3) thermoelectric nanomaterials fabricated by Pulse Plasma in Liquidcitations
- 2017Effect of metallic coating on the properties of copper-silicon carbide compositescitations
- 2017Synthesis and characterization of antimony telluride for thermoelectric And optoelectronic applicationscitations
- 2017Microstructure and Thermal Properties of Cu-SiC Composite Materials Depending on the Sintering Techniquecitations
Places of action
Organizations | Location | People |
---|
document
Using SPS Sintering System in Fabrication of Advanced Semiconductor Materials
Abstract
The interest in the Spark Plasma Sintering (SPS) technique has continuously increased over the last few years. This article shows the possibility of the development of a SPS device used for material processing and synthesis both in both scientific and industrial applications. This work presents an example of processing Arc-Meleted (half-Heusler, cobalt triantimonide) and SHS-synthesized semiconductors (bismuth telluride) materials with SPS device. The system functionalities expansion is presented, showing the possible way of increasing the information amount obtained about SPS processes and using the SPS apparatus for conducting synthesis of materials and increasing reproducibility and accuracy of process parameters control.