People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ipatov, Mihail
Ministerio de Ciencia e Innovación
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Development of anisotropic Nd-Fe-B powder from isotropic gas atomized powdercitations
- 2024Comparison of the Magnetic and Structural Properties of MnFePSi Microwires and MnFePSi Bulk Alloycitations
- 2023Influence of the Geometrical Aspect Ratio on the Magneto-Structural Properties of Co2MnSi Microwirescitations
- 2023Preparation and Magneto-Structural Investigation of High-Ordered (L21 Structure) Co2MnGe Microwirescitations
- 2023Effects of thermal cycling on the thermal and magnetic response of Ni–Mn–Sn–Pd alloyscitations
- 2023Preparation and Magneto-Structural Investigation of High Ordered Structure in Co2MnGe Microwires
- 2023Effect of Annealing on the Magnetic Properties of Co2MnSi-Based Heusler Alloy Glass-Coated Microwirescitations
- 2023Effect of Annealing on the Magnetic Properties of Co2MnSi-Based Heusler Alloy Glass-Coated Microwirescitations
- 2023Enhancing the Squareness and Bi-Phase Magnetic Switching of Co2FeSi Microwires for Sensing Applicationcitations
- 2023Carbon-Doped Co2MnSi Heusler Alloy Microwires with Improved Thermal Characteristics of Magnetization for Multifunctional Applicationscitations
- 2022Preparation and Magneto-Structural Investigation of Nanocrystalline CoMn-Based Heusler Alloy Glass-Coated Microwirescitations
- 2022Fabrication and Magneto-Structural Properties of Co2-Based Heusler Alloy Glass-Coated Microwires with High Curie Temperaturecitations
- 2022Fabrication and Magneto-Structural Properties of Co2-Based Heusler Alloy Glass-Coated Microwires with High Curie Temperaturecitations
- 2022Magnetic properties of layered hybrid organic-Inorganic metal-halide perovskites: Transition metal, organic cation and perovskite phase pffectscitations
- 2022Magnetic Properties of Layered Hybrid Organic‐Inorganic Metal‐Halide Perovskites: Transition Metal, Organic Cation and Perovskite Phase Effectscitations
- 2022Anomalous magnetic behavior in half-metallic Heusler Co2FeSi alloy glass-coated microwires with high Curie temperaturecitations
- 2022Elucidation of the Strong Effect of the Annealing and the Magnetic Field on the Magnetic Properties of Ni2-Based Heusler Microwirescitations
- 2022Elucidation of the Strong Effect of the Annealing and the Magnetic Field on the Magnetic Properties of Ni2-Based Heusler Microwirescitations
- 2021Martensitic transformation, magnetic and magnetocaloric properties of Ni–Mn–Fe–Sn Heusler ribbonscitations
- 2020Martensitic Transformation, Thermal Analysis and Magnetocaloric Properties of Ni-Mn-Sn-Pd Alloyscitations
- 2020Martensitic Transformation, Thermal Analysis and Magnetocaloric Properties of Ni-Mn-Sn-Pd Alloyscitations
- 2020Coercivity and Magnetic Anisotropy of (Fe0.76Si0.09B0.10P0.05)97.5Nb2.0Cu0.5 Amorphous and Nanocrystalline Alloy Produced by Gas Atomization Processcitations
- 2018Magnetic Properties of Annealed Amorphous Fe72.5Si12.5B15 Alloy Obtained by Gas Atomization Techniquecitations
- 2014Annealing effect on the crystal structure and exchange bias in Heusler Ni45.5Mn43.0In11.5 alloy ribbonscitations
Places of action
Organizations | Location | People |
---|
document
Preparation and Magneto-Structural Investigation of High Ordered Structure in Co2MnGe Microwires
Abstract
<jats:p>We used the Taylor-Ulitovsky Technique to prepare nanocrystalline Co2MnGe Heusler alloy glass-coated microwires with a metallic nucleus diameter of 18 &plusmn; 0.1 &micro;m and a total diameter of 27.2 &plusmn; 0.1 &micro;m. Magnetic and structural studies were carried out to determine the fundamental magneto-structural characteristics of Co2MnGe glass-coated microwires. XRD revealed a well-defined nanocrystalline structure with average grain size about 63 nm, lattice parameter a = 5.62 and a unique mixture of L21 and B2 phases. The magnetization curves for field cooling and field heating (FC-FH) demonstrate a considerable dependence on the applied magnetic field, ranging from 50 Oe to 20 kOe. Internal stresses, originated by the production process, resulted in various magnetic phases, which were responsible for the notable difference of field cooling (FC) and field heating (FH) curves on magnetization dependence versus temperature. Furthermore, the ferromagnetic behavior and expected high Curie temperature together with high degree of L21 ordered makes it a promising candidate for many applications.</jats:p>