Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mhadhbi, Mohsen

  • Google
  • 2
  • 6
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Microstructural and Thermal Properties of the Mechanically Alloyed Fe3Al Powders Doped with Boroncitations
  • 2022Spark Plasma Sintering of Nanostructured TiCrC Carbides Prepared via Mechanical Alloying3citations

Places of action

Chart of shared publication
Driss, Miloud
1 / 1 shared
Safi, Brahim
1 / 7 shared
Schoenstein, Frédéric
1 / 24 shared
Jouini, Noureddine
1 / 8 shared
Dağ, İlker Emin
1 / 2 shared
Avar, Baris
1 / 4 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Driss, Miloud
  • Safi, Brahim
  • Schoenstein, Frédéric
  • Jouini, Noureddine
  • Dağ, İlker Emin
  • Avar, Baris
OrganizationsLocationPeople

document

Spark Plasma Sintering of Nanostructured TiCrC Carbides Prepared via Mechanical Alloying

  • Schoenstein, Frédéric
  • Mhadhbi, Mohsen
  • Jouini, Noureddine
  • Dağ, İlker Emin
  • Avar, Baris
Abstract

<jats:p>In order to produce nanostructured Ti0.9Cr0.1C powders, an elemental powder mixture of titanium, chromium, and graphite is milled in this work using a high-energy ball mill for various milling times. Microstructural characteristics such as crystallite size, microstrain, lattice parameter, and dislocation density are determined using X-ray diffraction (XRD). Mechanical alloying successfully produced nanocrystalline (Ti,Cr)C with an average crystallite size of 11 nm. This size of the crystallites is also directly verified using transmission electron microscopy (TEM). Scanning electron microscopy (SEM) was used to investigate the morphology of the samples. The novelty of this work is advancing the scientific understanding of the effect of milling time on the particle size distribution and crystalline structure, and also understanding the effect of the spark plasma sintering on the different properties of the bulks. Densified cermet samples were produced from the nanocrystalline powders, milled for 5, 10 and 20 hours by SPS process at 1800 degrees for 5 min under a pressure of 80 MPa. Phase changes of the produced cermets were examined according to XRD, SEM/EDX analyses. Significant amounts of Cr and Fe elements were detected, especially in the 20 h milled cermet. The bulk forms of the milled powders for 5 and 20 h had a relative density of 98.43 and 98.51 %, respectively. However, 5 h milled cermet had 93.3 HRA because of the more homogeneous distribution of the (Ti,Cr)C phase, the low iron content and high relative density. According to the 0.0011 mm/year corrosion rate, and 371.68 k&amp;Omega;*cm2 charge transfer resistance obtained from the potentiodynamic polarization and EIS tests, the 20 h cermet was the specimen with the highest corrosion resistance.</jats:p>

Topics
  • density
  • morphology
  • corrosion
  • chromium
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • grinding
  • milling
  • carbide
  • transmission electron microscopy
  • dislocation
  • titanium
  • iron
  • electrochemical-induced impedance spectroscopy
  • Energy-dispersive X-ray spectroscopy
  • sintering