People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Presoly, Peter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2024Experimental investigation and computational thermodynamics of the quaternary system Fe-C-Mn-S
- 2024On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steelcitations
- 2024Influence of Silicon and Tramp Elements on the High-temperature Oxidation of Steel in Direct Casting and Rolling Processes
- 2024Critical Examination of the Representativeness of Austenite Grain Growth Studies Performed In Situ Using HT-LSCM and Application to Determine Growth-inhibiting Mechanismscitations
- 2023The influence of intergranular oxidation on surface crack formation in continuous casting of steelcitations
- 2023Classification of peritectic steels by experimental methods, computational thermodynamics and plant data: An Overview
- 2023Thermodynamic modeling of the Fe-Sn system including an experimental re-assessment of the liquid miscibility gapcitations
- 2023Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometrycitations
- 2023High-temperature oxidation of steel recycled from scrap: The role of tramp elements and their influence on oxidation behavior
- 2022High temperature thermodynamics of the Fe-C-Mn system; new experimental data for the Fe-C-10 and 20 wt.-% Mn system
- 2022Primary Carbide Formation in Tool Steelscitations
- 2022Evaluation of different alloying concepts to trace non-metallic inclusions by adding rare earths on a laboratory scalecitations
- 2022Selected metallurgical models for computationally efficient prediction of quality-related issues in continuous slab casting of steel
- 2022Experimental thermodynamics for improving CALPHAD optimizations at the Chair of Ferrous Metallurgy
- 2021Characterization of the gamma-loop in the Fe-P system by coupling DSC and HT-LSCM with complementary in-situ experimental techniquescitations
- 2020Study on the Possible Error Due to Matrix Interaction in Automated SEM/EDS Analysis of Nonmetallic Inclusions in Steel by Thermodynamics, Kinetics and Electrolytic Extractioncitations
- 2020Experimental Study of High Temperature Phase Equilibria in the Iron-Rich Part of the Fe-P and Fe-C-P Systemscitations
- 2020Investigation of Fe–C–Cr and Fe–C–Cr–Ni-based systems with the use of DTA and HT-LSCM methodscitations
- 2019High precious phase diagrams – a roadmap for a successful casting processing
- 2019Evaluation of AHSS concepts with a focus on the product properties and appropriate casting characteristics of Arvedi ESP thin slab casterscitations
- 2017The potential for grain refinement of a super austenitic stainless steel with a cerium grain refiner
- 2017Modeling Inclusion Formation during Solidification of Steelcitations
- 2017Influence of Silicon and Manganese on the Peritectic Range for Steel Alloys
- 2017Further development and validation of IDS by means of selected experiments
- 2016On the modelling of microsegregation in steels involving thermodynamic databases
Places of action
Organizations | Location | People |
---|
article
Thermodynamic modeling of the Fe-Sn system including an experimental re-assessment of the liquid miscibility gap
Abstract
The usage of low-grade ferrous scrap has increased over decades to decrease CO2 emissions and to produce steel products at a low cost. A serious problem in melting post-consumer scrap material is the accumulation of tramp elements, e.g., Cu and Sn, in the liquid steel. These tramp elements are difficult to remove during conventional steelmaking processes. Sn is considered as one of the most harmful tramp elements because, together with Cu, it sometimes induces the liquid metal embrittlement in high-temperature ferrous processing, e.g., continuous casting and hot rolling. Furthermore, the chemical interaction between Fe and Sn plays an important role in the Sn smelting process. The raw material used in the Sn smelting process is SnO2 (cassiterite), in which Fe3O4 is a gangue in the Sn ore. In the process, the reduction of Fe3O4 is unavoidable, which results in forming a Fe-Sn alloy (hardhead). The recirculation of the hardhead decreases the furnace capacity and increases the energy consumption in the smelting. The need to efficiently recover Sn from secondary resources is therefore inevitable. The CALculation of PHAse Diagrams (CALPHAD) approach helps to predict the equilibrium state of the multicomponent system. Previously reported studies of the Fe-Sn system show inconsistencies in the calculations and the experimental results. Mainly the miscibility gap in the liquid phase was under debate, as experimental data of the phase boundary are scattered. Experimental study and re-optimization of model parameters were carried out with emphasis on the correct shape of the miscibility gap. Three different experimental techniques were employed: differential scanning calorimetry, electromagnetic levitation, and contact angle measurement. The present thermodynamic model has higher accuracy in predicting the solubility of Sn in the body-centered cubic (bcc), compared to previous assessments. This is achieved by re-evaluating the Gibbs energies of the FeSn and FeSn2 compounds and the peritectic reaction related to Fe5Sn3. Also, the inconsistencies related to the miscibility gap around XSn = 0.31-0.81 were resolved. The database developed in the present study can contribute to the development of a large CALPHAD database containing tramp elements.