Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tsurumaki, Akiko

  • Google
  • 3
  • 10
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Insight into physico-chemical properties of oxalatoborate-based ionic liquids through combined experimental-theoretical characterizationcitations
  • 2023Quasi-solid-state electrolytes - strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries14citations
  • 2023Effects of Difluoro(oxalato)borate-Based Ionic Liquid as Electrolyte Additive for Li-Ion Batteries3citations

Places of action

Chart of shared publication
Palluzzi, Matteo
2 / 3 shared
Navarra, Maria Assunta
3 / 15 shared
Busato, Matteo
1 / 4 shared
Dangelo, Paola
1 / 7 shared
Mannucci, Giorgia
1 / 1 shared
Mazzapioda, Lucia
1 / 2 shared
Adenusi, Henry
1 / 1 shared
Donato, Graziano Di
2 / 2 shared
Passerini, Stefano
1 / 34 shared
Maresca, Giovanna
1 / 3 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Palluzzi, Matteo
  • Navarra, Maria Assunta
  • Busato, Matteo
  • Dangelo, Paola
  • Mannucci, Giorgia
  • Mazzapioda, Lucia
  • Adenusi, Henry
  • Donato, Graziano Di
  • Passerini, Stefano
  • Maresca, Giovanna
OrganizationsLocationPeople

article

Quasi-solid-state electrolytes - strategy towards stabilising Li|inorganic solid electrolyte interfaces in solid-state Li metal batteries

  • Mazzapioda, Lucia
  • Adenusi, Henry
  • Navarra, Maria Assunta
  • Tsurumaki, Akiko
  • Donato, Graziano Di
  • Passerini, Stefano
Abstract

Solid-state batteries (SSBs) based on inorganic solid electrolytes (ISEs) are considered promising candidates for enhancing the energy density and the safety of next-generation rechargeable lithium batteries. However, their practical application is frequently hampered by the high resistance arising at the Li metal anode/ISE interface. Herein, a review of the conventional solid-state electrolytes (SSEs) the recent research on quasi-solid-state battery (QSSB) approaches to overcome the issues of the state-of-the-art SSBs is reported. The feasibility of ionic liquid (IL)-based interlayers to improve ISE/Li metal wetting and enhance charge transfer at solid electrolyte interfaces with both positive and lithium metal electrodes is presented together with a novel generation of IL-containing quasi-solid-state-electrolytes (QSSEs), offering favourable features. The opportunities and challenges of QSSE for the development of high energy and high safety quasi-solid-state lithium metal batteries (QSSLMBs) are also discussed.

Topics
  • density
  • impedance spectroscopy
  • energy density
  • Lithium
  • interfacial