People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miloševski, Darko
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Liquid phase sintering of dense and porous composites obtained from industrial wastes
Abstract
<jats:p>Metallurgical slag and waste TV glass hawe been used for fabrication of ceramic-glass composite with a controlled porosity. A dense composite consisted of 70 wt% slag and 30 wt% TV glass sintered at 1000 ºC/2h, with the integral porosity of 16 %, has the E–modulus and bending strength of 26.0±1.6 GPa and 60.8±1.9 MPa, respectively. Slag with granulation of 0.125÷0.063 mm and 20 wt% TV glass, sintered at 950 ºC/2h possesses integral porosity of 37 % and E-modulus and bending strength of 11.86±2 GPa and 23.14±2 MPa, respectively, while the composite with the same composition but with porosity of 65 % possesses E-modulus of 2.1±0.3 GPa and bending strength of 3.0±0.4 MPa. The technical coefficient of thermal expansion of the porous systems is 11.12⋅10–6/ºC. The porous composites have been in thermal equilibrium and acted stable in aggressive media.</jats:p>