People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Boakye, Kwabena
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Properties of Self-Compacting Concrete (SCC) Prepared with Binary and Ternary Blended Calcined Clay and Steel Slagcitations
- 2024Influence of Calcining Temperature on the Mineralogical and Mechanical Performance of Calcined Impure Kaolinitic Clays in Portland Cement Mortarscitations
- 2023Influence of Calcined Clay Pozzolan and Aggregate Size on the Mechanical and Durability Properties of Pervious Concretecitations
- 2023Mechanical and durability performance of ternary blended calcined clay and pulverized granite mortar compositescitations
- 2023Effect of calcined clay on fresh and hardened properties of self-compacting concrete (SCC)citations
- 2023Hydration, Reactivity and Durability Performance of Low-Grade Calcined Clay-Silica Fume Hybrid Mortarcitations
- 2022Potential of low-grade kaolinitic clay as a cement substitution in concrete
- 2022Potential of calcined brick clay as a partial substitution in blended cement mortarscitations
- 2022Mechanochemical Characterisation of Calcined Impure Kaolinitic Clay as a Composite Binder in Cementitious Mortarscitations
- 2022Performance of low-grade kaolinitic clay as a cement substitute in mortar: A comparative study with fly ash
- 2022Use of low grade kaolinitic clays in development of a pozzolan-cement binder system
Places of action
Organizations | Location | People |
---|
article
Potential of calcined brick clay as a partial substitution in blended cement mortars
Abstract
Calcined kaolinitic clays, among other supplementary cementitious materials, have been acknowledged as having a good potential to reduce the CO2 emissions associated with cement and concrete production. However, little attention has been given to impure kaolinitic clays which are usually used in the manufacture of burnt bricks and other products. This paper has studied the potential use of less pure kaolinitic clay, which is<br/>normally used in brick production, as a pozzolan in blended cement mortar. X-ray diffraction studies revealed the presence of kaolinite, illite and quartz in the clay. The clay was calcined at 600oC and 700oC and blended with Portland cement at weight percentages of 10, 20 and 30. From the Frattini test, clay calcined at 700oC showed a better pozzolanic reactivity than that calcined at 600oC . Blended cements containing 700oCcalcined clay recorded lower water demand and setting times as compared to 600oC calcined clay. There was a reduction in compressive strengthat all replacement levels, both at early and later ages. Mortar containing 700oC calcined clay recorded higher compressive strength than the clay<br/>calcined at 600oC .