People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Myshlyaev, Michail
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2019EBSD investigation of microstructure evolution during cryogenic rolling of type 321 metastable austenitic steelcitations
- 2018EBSD characterization of cryogenically rolled type 321 austenitic stainless steelcitations
- 2017EBSD анализ микроструктуры аустенитной стали после прокатки в криогенных условиях
Places of action
Organizations | Location | People |
---|
article
EBSD анализ микроструктуры аустенитной стали после прокатки в криогенных условиях
Abstract
This work is based on the use of electron backscatter diffraction (EBSD) methods to investigate the microstructure of metastable austeniticsteel 12X18H10T (321) after cryogenic rolling. Cryogenic deformation was accompanied by martensitic transformations, and the martensitic phase nucleation mainly in deformation bands. It is assumed that the proceeding of the martensitic transformation in the most deformed parts of the microstructure should prevent the evolution of deformation-induced boundaries in the austenite and, thus, inhibit the process of fragmentation of this phase. Mechanical twinning was the primary (or even sole) mechanism providing HAB formation in the austenite.