Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gandhi, Tejal

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Identification of Critical Factors Influencing the In-Vitro Dissolution o f Bicalutamide Tablets Prepared Using Madg Techniquecitations

Places of action

Chart of shared publication
Choudhary, Nisha
1 / 4 shared
Thakkar, Vaishali
1 / 1 shared
Chavda, Dipika
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Choudhary, Nisha
  • Thakkar, Vaishali
  • Chavda, Dipika
OrganizationsLocationPeople

article

Identification of Critical Factors Influencing the In-Vitro Dissolution o f Bicalutamide Tablets Prepared Using Madg Technique

  • Choudhary, Nisha
  • Gandhi, Tejal
  • Thakkar, Vaishali
  • Chavda, Dipika
Abstract

<jats:p>This study was aimed to utilize the Moisture Activated Dry Granulation (MADG) technique to formulate Bicalutamide tablet and identify critical factors influencing its dissolution. The Bicalutamide inclusion complex was formed using the kneading method. Aeroperl 300 was selected as an adsorbent, polyvinylpyrrolidone (PVP) K30 as a binder, Microcrystalline Cellulose (MCC) and Lactose Monohydrate (LMH) in1:1 ratio as fillers. Croscarmellose sodium (CCS) and neusilin were used as disintegrating agents, as they did not affect the disintegration time when hardness and compression force increased. Box Behnken experimental design was used to optimize formulations and was evaluated for pre and post-compression parameters. The optimized formulation was compared with the marketed and wet granulation formulation. In addition, the short term stability testing of the optimized batch was performed. The optimized inclusioncomplex of hydroxypropyl beta-cyclodextrin (HP-ß-CD) was selected based on a phase solubility study in 1:1 ratio with drug toimprove solubility. The optimized batch was prepared by MADG at granulator speed of 540rpm, using 4.30 % PVPK30, and 1.5 % Aeroperl 300. It showed a disintegration time of 208.33 sec.Percentage drug release was 95.02 % in 30 mins, and hardness 5.4 kg/cm2. The stability study results confirmed the stability of the tablets. The Bicalutamide tablet was successfully formulated using the MADG technique. The parameters affecting the in-vitro dissolution were identified and optimized, leading to better bioavailability.Keywords: Bicalutamide, Moisture Activated Dry Granulation technology (MADG), hydroxypropyl beta-cyclodextrin (HP-β-CD), Box Behnken design (BBD), Croscarmellose sodium</jats:p>

Topics
  • inclusion
  • phase
  • Sodium
  • hardness
  • cellulose
  • size-exclusion chromatography