People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malyshev, Oleg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024V₃Si: an alternative thin film material for superconducting RF cavities
- 2024Upgraded multiprobe sample inserts for thin film SRF cavity developments
- 2024A high throughput facility for the RF characterisation Of planar superconducting thin films
- 2023V3Si Thin Films for SRF Applications
- 2023The effect of small bends in thin non-evaporable getter coated tubes on the partial pressure ratio as a function of sticking probability
- 2023Deposition and Characterisation of V₃Si films for SRF Applications
- 2022A First 6 GHz Cavity Deposition with B1 Superconducting Thin Film at ASTeC
- 2019PVD Depostion of Nb₃Sn Thin Film on Copper Substrate from an Alloy Nb₃Sn Target
- 2019Impact of the Cu Substrate Surface Preparation on the Morphological, Superconductive and RF Properties of the Nb Superconductive Coatings
- 2017Atomic Layer Deposition of Niobium Nitride from Different Precursors
Places of action
Organizations | Location | People |
---|
document
Upgraded multiprobe sample inserts for thin film SRF cavity developments
Abstract
Optimisation of thin film (TF) coating parameters for producing SRF cavities requires rapid testing of superconducting properties. A dedicated multiprobe facility built at Daresbury Lab, based on a liquid He free cryocooler, allows such measurements to be performed. The facility has vacuum tubular inserts where the sample probe is loaded and cooled with He gas. The experimental inserts were either newly built or upgraded: (1) A DC resistance experiment allows measurements of critical temperature (Tc) and residual resistance ratio (RRR) on non-conductive substrates (e.g. sapphire). A newly designed insert allows better temperature control and easier sample change. (2) A new insert for magnetic field measurements of Tc on both conductive and non-conductive substrates. (3) An existing insert for planar magnetic field penetration experiments was significantly redesigned. It operates at lower temperatures (>5.5 K), parallel magnetic fields < 600 mT, increased sensitivity, and enables measurements of field of first flux penetration (Bfp) and Tc on various substrates: copper and sapphire, the latter of which was impossible to measure with an older design.