People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jones, Lee
UK Research and Innovation
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2021A linked geomorphological and geophysical modelling methodology applied to an active landslidecitations
- 2018Transverse Energy Distribution Measurements for Polycrystalline and (100) Copper Photocathodes with Known Levels of Surface Roughness
- 2015The Evolution of the Transverse Energy Distribution of Electrons from a GaAs Photocathode as a Function of its Degradation State
- 2014The Evolution of the Transverse Energy Distribution of Electrons from a GaAs Photocathode as a Function of its Degradation State
Places of action
Organizations | Location | People |
---|
document
Transverse Energy Distribution Measurements for Polycrystalline and (100) Copper Photocathodes with Known Levels of Surface Roughness
Abstract
The minimum achievable emittance in an electron accelerator depends strongly on the intrinsic emittance of the photocathode electron source. This is measureable as the mean longitudinal and transverse energy spreads in the photoemitted electrons. ASTeC's Transverse Energy Spread Spectrometer (TESS)* experimental facility can be used with III-V semiconductor, multi-alkali and metal photocathodes to measure transverse and longitudinal energy distributions. Our R&D facilities also include in-vacuum quantum efficiency measurement, XPS, STM, plus ex-vacuum optical and STM microscopy for surface metrology. Intrinsic emittance is strongly affected by the photocathode surface roughness**, and the development of techniques to manufacture the smoothest photocathode is a priority for the electron source community. We present energy distribution measurements for electrons emitted from copper photocathodes with both defined single-crystal (100) and polycrystalline surfaces with measured levels of surface roughness.