People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chiggiato, Paolo
European Organization for Nuclear Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Study of selected mild steels for application in vacuum systems of future gravitational wave detectorscitations
- 2019Role of the different chemical components in the conditioning process of air exposed copper surfacescitations
- 2019Cryogenic surface resistance of coppercitations
- 2019Cryogenic surface resistance of copper:Investigation of the impact of surface treatments for secondary electron yield reductioncitations
- 2017Amorphous Carbon Thin Film Coating of the SPS Beamline: Evaluation of the First Coating Implementation
- 2016Vacuum Performance of Amorphous Carbon Coating at Cryogenic Temperature with Presence of Proton Beams
- 2015Recommissioning of the COLDEX Experiment at CERN
- 2014Development of Aluminium Vacuum Chambers for the LHC Experiments at CERN
Places of action
Organizations | Location | People |
---|
document
Amorphous Carbon Thin Film Coating of the SPS Beamline: Evaluation of the First Coating Implementation
Abstract
As part of the LHC Injector Upgrade (LIU) project, the Super Proton Synchrotron (SPS) must be upgraded in order to inject in the LHC 25 ns bunch spaced beams of higher intensity. To mitigate the Electron Multipacting (EM) phenomenon in the SPS, CERN developed thin film carbon coatings with a low Secondary Electron Yield (SEY). The development went from coating small samples, up to coating of 6 m long vacuum chambers directly installed in the magnets. To deposit the low SEY amorphous carbon (aC) film on the vacuum chamber inner wall of SPS ring components, a modular hollow cathode train was designed. The minimization of the logistical impact requires a strategy combining in-situ and ex-situ coating, depending on the type of components. To validate the implementation strategy of the aC thin films and the in-situ coating process along the 7 km long SPS beamline, approximately 2 cells of B-type bending dipoles and 9 focussing quadrupoles are foreseen to be treated with the aC coating during the Extended Year End Technical Stop (EYETS) 2016-2017. We will discuss the coating technique and evaluate both the implementation process and the resulting coating performance. Proceedings of the 8th Int. Particle Accelerator Conf., IPAC2017, Copenhagen, Denmark