People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salemme, Roberto
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
document
Vacuum Performance of Amorphous Carbon Coating at Cryogenic Temperature with Presence of Proton Beams
Abstract
Amorphous carbon (a-C) coating is the baseline electron multipacting mitigation strategy proposed for the Inner Triplets (IT) in the High Luminosity upgrade of the Large Hadron Collider (HL-LHC). As of 2014, the COLD bore EXperiment (COLDEX) is qualifying the performance of a-C coating at cryogenic temperature in a LHC type cryogenic vacuum system. In this paper, the experimental results following a cryogenic vacuum characterization of a-C coating in the 5 to 150 K temperature range are reviewed. We discuss the dynamic pressure rise, gas composition, dissipated heat load and electron activity observed within an accumulated beam time of 9 Ah. The results of dedicated experiments including pre-adsorption of different gas species (H2, CO) on the a-C coating are discussed. Based of phenomenological modeling, up-to-date secondary emission input parameters for a-C coatings are retrieved for electron cloud build-up simulations. Finally, first implications for the HL-LHC ITs design are drawn.