Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Adam, Christian

  • Google
  • 9
  • 27
  • 131

Hamburg University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2024Green steel from red mud through climate-neutral hydrogen plasma reduction84citations
  • 2023Production of a hydraulic material from post treated steelmaking slagscitations
  • 2022Additive manufactured versus traditional osteosynthesis plates - a finite element analysiscitations
  • 2021Synthesis and characterisation of alites from reduced basic oxygen furnace slags14citations
  • 2020Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO46citations
  • 2019Formation and chemical stabilisation of tricalcium-silicate during solidification from the melt of post-treated metallurgical slagscitations
  • 2018Nachbehandlung von Stahlwerksschlacken und deren Verwertung als Klinkermaterial ; Post-treatment of steelmaking slags and their utilisation as cement clinkercitations
  • 2016Corrosion and abrasion resistant protective coatings for biomass combustioncitations
  • 2010Recovery of chromium from AOD-converter slags27citations

Places of action

Chart of shared publication
Raabe, Dierk
1 / 523 shared
Souza Filho, Isnaldi R.
1 / 5 shared
Jovičević-Klug, Matic
1 / 5 shared
Springer, Hauke
1 / 25 shared
Simon, Sebastian
3 / 12 shared
Schraut, Katharina
4 / 4 shared
Adamczyk, Burkart
6 / 6 shared
Von Werder, Julia
3 / 10 shared
Meng, Birgit
3 / 34 shared
Stephan, D.
3 / 10 shared
Seide, Klaus
1 / 1 shared
Schulz, Arndt-Peter
1 / 1 shared
Krautschneider, Wolfgang
1 / 2 shared
Münch, Matthias
1 / 1 shared
Barth, Tobias
1 / 2 shared
Herzel, Hannes
1 / 2 shared
Grevel, K.-D.
1 / 1 shared
Emmerling, Franziska
1 / 59 shared
Majzlan, J.
1 / 3 shared
Benisek, A.
1 / 1 shared
Dachs, E.
1 / 3 shared
Kargl, F.
1 / 2 shared
Pflumm, R.
1 / 2 shared
Armatys, Kamila
1 / 3 shared
Galetz, M. C.
1 / 9 shared
Mudersbach, D.
1 / 1 shared
Brenneis, Rudolf
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2016
2010

Co-Authors (by relevance)

  • Raabe, Dierk
  • Souza Filho, Isnaldi R.
  • Jovičević-Klug, Matic
  • Springer, Hauke
  • Simon, Sebastian
  • Schraut, Katharina
  • Adamczyk, Burkart
  • Von Werder, Julia
  • Meng, Birgit
  • Stephan, D.
  • Seide, Klaus
  • Schulz, Arndt-Peter
  • Krautschneider, Wolfgang
  • Münch, Matthias
  • Barth, Tobias
  • Herzel, Hannes
  • Grevel, K.-D.
  • Emmerling, Franziska
  • Majzlan, J.
  • Benisek, A.
  • Dachs, E.
  • Kargl, F.
  • Pflumm, R.
  • Armatys, Kamila
  • Galetz, M. C.
  • Mudersbach, D.
  • Brenneis, Rudolf
OrganizationsLocationPeople

article

Additive manufactured versus traditional osteosynthesis plates - a finite element analysis

  • Seide, Klaus
  • Schulz, Arndt-Peter
  • Krautschneider, Wolfgang
  • Münch, Matthias
  • Adam, Christian
  • Barth, Tobias
Abstract

Additive Manufacturing (AM) is rapidly gaining acceptance in healthcare. Due to 3D printing of polyetheretherketone (PEEK) constructions almost any complex geometry, e. g. bio-mimicking implants or light-weight hollow implant bodies, can be produced. In this paper a direct comparison between PEEK and titanium osteosynthesis plates is achieved with a finite element analysis. By that, pros and cons of PEEK as implant material are discussed and different use cases are identified. For the comparison a generic osteosynthesis plate for diaphysis is designed. The exceeding of the yield strength even at low bending and torsional loads highlights the problems that occur when applying PEEK implants at locations which are affected by moderate mechanical loads. Since fracture stabilisation is the main function of osteosynthesis plates, stiffness is a highly relevant property of these. Therefore, a direct exchange of titanium to PEEK would increase the risk of non-union. Thus, a different structure or an improved material, e. g. carbon fibre PEEK composite, is required for loaded locations to replace metallic implants.

Topics
  • impedance spectroscopy
  • Carbon
  • strength
  • composite
  • titanium
  • yield strength
  • finite element analysis
  • additive manufacturing