People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mau, Robert
University of Rostock
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022The influence of PEGDA’s molecular weight on its mechanical properties in the context of biomedical applicationscitations
- 2021Rapid tooling for micro injection molding of micro medical devices via digital light processing
- 2020PEGDA drug delivery scaffolds manufactured with a novel hybrid AM process
- 20203D printing of frames for anti-coronavirus face shields using different processes and materials
- 20193D-printed PEGDA structure with multiple depots for advanced drug delivery systems
- 2019A Novel Hybrid Additive Manufacturing Process for Drug Delivery Systems with Locally Incorporated Drug Depots. citations
- 2019Thermomechanical properties of PEGDA in combination with different photo-curable comonomerscitations
- 2018Thermomechanical properties of PEGDA and its co-polymerscitations
Places of action
Organizations | Location | People |
---|
article
Rapid tooling for micro injection molding of micro medical devices via digital light processing
Abstract
High-resolution additive manufacturing methods such as digital light processing (DLP) offer promising opportunities for rapid tooling for micro injection molding (µIM). There are possible savings in time and costs for µIM of small and micro plastic parts for sensors, electronics and (bio)medical products. Here we present the rapid tooling of polymeric molds via DLP 3D printing for the µIM of convex chips (Ø3.5 x 1.16 mm) of polypropylene (PP) as exemplarily chosen geometry and medical relevant material. Five molds (one mold has a total size of 8 x 22 x 10 mm, height x length x width, made of 2 pieces) were 3D printed simultaneously in t ~ 30 min (plus t = 10 min post-curing) with a layer height of z = 50 µm and a photopolymer consumption of m ~ 2 g per mold. The micro-injection-molded PP chips show a significant staircase-effect as a result of 3D printing of the molds. Nevertheless, the molds perform well (no cracks, adequate demolding) when used for a relatively low number of µIM cycles (n ~ 20, Tmold = 30 °C, TPP = 205 °C).