People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seitz, Hermann
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Quantitative Macromolecular Modeling Assay of Biopolymer-Based Hydrogelscitations
- 2024Direct ink writing of highly loaded polycaprolactone-barium titanate/bioactive glass composites for osteochondral tissue engineering
- 2023Piezoelectric and bioactive composites: Functional materials for bone tissue engineering
- 20223D printed gelatin/decellularized bone composite scaffolds for bone tissue engineering: Fabrication, characterization and cytocompatibility studycitations
- 2022A novel approach to fabricate load-bearing Ti6Al4V-Barium titanate piezoelectric bone scaffolds by coupling electron beam melting and field-assisted sintering
- 2022The influence of PEGDA’s molecular weight on its mechanical properties in the context of biomedical applicationscitations
- 2021Rapid tooling for micro injection molding of micro medical devices via digital light processing
- 20213D printing of biodegradable poly(L-lactide)/hydroxyapatite composite by composite extrusion modeling
- 2021Heat accumulation during femtosecond laser treatment at high repetition rate – A morphological, chemical and crystallographic characterization of self-organized structures on Ti6Al4V
- 2021Tunable Pseudo-Piezoelectric Effect in Doped Calcium Titanate for Bone Tissue Engineering
- 20203D Printing of Piezoelectric Barium Titanate-Hydroxyapatite Scaffolds with Interconnected Porosity for Bone Tissue Engineeringcitations
- 2020Sintering behavior of 3D printed barium titanate composite scaffolds for bone repair
- 2020PEGDA drug delivery scaffolds manufactured with a novel hybrid AM process
- 20203D printing of frames for anti-coronavirus face shields using different processes and materials
- 20193D-printed PEGDA structure with multiple depots for advanced drug delivery systems
- 2019A Novel Hybrid Additive Manufacturing Process for Drug Delivery Systems with Locally Incorporated Drug Depots. citations
- 2019Thermomechanical properties of PEGDA in combination with different photo-curable comonomerscitations
- 20193D printing of smart materials for bone regeneration
- 2018Thermomechanical properties of PEGDA and its co-polymerscitations
- 2007Non-toxic flexible photopolymers for medical stereolithography technologycitations
Places of action
Organizations | Location | People |
---|
article
3D printing of frames for anti-coronavirus face shields using different processes and materials
Abstract
Due to the rapid spread of the novel coronavirus SARS-CoV-2 (COVID-19), medical protective equipment is in high demand. In order to cover the need for these protective materials, frames for face shields, for instance, can be produced flexibly, quickly and decentrally in small quantities through 3D printing. In this study, Fused Deposition Modeling (FDM) is used for the production of corresponding components from Polylactide plus (PLA+) and Polyethylene terephthalate glycol (PETG) material. Stereolithography (SLA) is also used to produce high-quality frames from a photopolymer. The frames are presented and examined with regard to their manufacturing technology features and surface properties.