People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Neagu, Dragos
University of St Andrews
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (34/34 displayed)
- 2024Squeezing Out Nanoparticles from Perovskites: Controlling Exsolution with Pressurecitations
- 2024Renewable syngas & hydrogen synthesis via steam reforming of glycerol over ceria-mediated exsolved metal nano catalystscitations
- 2023Renewable syngas & hydrogen synthesis via steam reforming of glycerol over ceria-mediated exsolved metal nano catalystscitations
- 2022Ni-doped A-site excess SrTiO3 thin films modified with Au nanoparticles by a thermodynamically-driven restructuring for plasmonic activitycitations
- 2022Ni-doped A-site excess SrTiO3 thin films modified with Au nanoparticles by a thermodynamically-driven restructuring for plasmonic activity ; ENEngelskEnglishNi-doped A-site excess SrTiO3 thin films modified with Au nanoparticles by a thermodynamically-driven restructuring for plasmonic activitycitations
- 2021Exsolution of catalytically active iridium nanoparticles from strontium titanatecitations
- 2021Stability and activity controls of Cu nanoparticles for high-performance solid oxide fuel cellscitations
- 2021Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisationcitations
- 2020Exsolution of catalytically active iridium nanoparticles from strontium titanatecitations
- 2020Endogenous nanoparticles strain perovskite host lattice providing oxygen capacity and driving oxygen exchange and CH4 conversion to syngascitations
- 2020Symmetrical Exsolution of Rh Nanoparticles in Solid Oxide Cells for Efficient Syngas Production from Greenhouse Gasescitations
- 2020Low temperature methane conversion with perovskite-supported exo/endo-particlescitations
- 2019In situ observation of nanoparticle exsolution from Perovskite oxides:from atomic scale mechanistic insight to nanostructure tailoringcitations
- 2019In situ observation of nanoparticle exsolution from perovskite oxidescitations
- 2019Towards efficient use of noble metalscitations
- 2018Sulfur-tolerant, exsolved Fe–Ni alloy nanoparticles for CO oxidationcitations
- 2018Spinel-based coatings for metal supported solid oxide fuel cellscitations
- 2017Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticlescitations
- 2017Spinel-based coatings for metal supported solid oxide fuel cellscitations
- 2017Spinel-based coatings for metal supported solid oxide fuel cellscitations
- 2016Evidence and model for strain-driven release of metal nano-catalysts from perovskites during exsolutioncitations
- 2016Evolution of the electrochemical interface in high-temperature fuel cells and electrolyserscitations
- 2016Evolution of the electrochemical interface in high-temperature fuel cells and electrolyserscitations
- 2015Evidence and model for strain-driven release of metal nano-catalysts from perovskites during exsolutioncitations
- 2015Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolutioncitations
- 2014Calculation of a standard reformed biogas composition and testing on SOFC anode powderscitations
- 2013Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopantscitations
- 2013Calculation of a standard reformed biogas composition and testing on SOFC anode powderscitations
- 2013Perovskite Defect Chemistry as Exemplified by Strontium Titanatecitations
- 2013In situ growth of nanoparticles through control of non-stoichiometrycitations
- 2010Structure and Properties of La 0.4 Sr 0.4 TiO 3 Ceramics for Use as Anode Materials in Solid Oxide Fuel Cellscitations
- 2010Mecanism de creştere şi proprietǎţi ale filmelor subţiri de YBa2Cu3O7-αdepuse prin ablaţie laser PE (001) SrTiO3
- 2010Structure and properties of La0.4Sr0.4TiO3 Ceramics for use as anode materials in solid oxide fuel cellscitations
- 2010Synthesis of ceria-based ceramics by combustion technique
Places of action
Organizations | Location | People |
---|
article
Alkaline modified A-site deficient perovskite catalyst surface with exsolved nanoparticles and functionality in biomass valorisation
Abstract
The authors would like to thank the Petroleum Technology Development Fund (Nigeria) for funding this research and University of St Andrews (Scotland, UK) for the opportunity to carry out the research. ; Environmental problems associated with the use of fossil fuels and increase in energy demands due to rise in population and rapid industrialisation, are the driving forces for energy. Catalytic conversion of biomass to renewable energies is among the promising approaches to materialize the above. This requires development of robust catalysts to suppress deactivation due to carbon deposition and agglomeration. In this work, surface properties and chemistry such as exsolution of B-site metal catalyst nanoparticles, particle size and distribution, as well as catalyst-support interactions were tailored through the use of alkaline dopants to enhance catalytic behaviour in valorisation of glycerol. The incorporation of alkaline metals into the lattice of an A-site deficient perovskite modified the surface basic properties and morphology with a consequent robust catalyst-support interaction. This resulted in promising catalytic behaviour of the materials where hydrogen selectivity of over 30% and CO selectivity of over 60% were observed. The catalyst ability to reduce fouling of the catalyst surface as a result of carbon deposition during operation was also profound due to the robust catalyst-support interaction occurring at the exsolved nanoparticles due to their socketing and the synergy between the dopant metals in the alloy in perovskite catalyst systems. In particular, one of the designed systems, La0.4Sr0.2Ca0.3Ni0.1Ti0.9O3±δ, displayed almost 100% resistance to carbon deposition. Therefore, lattice rearrangement using exsolution and choice of suitable dopant could be tailored to improve catalytic performance. ; Peer reviewed