Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sellamuthu, Prabhukumar

  • Google
  • 1
  • 2
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Selective Laser Melting of AlSi10Mg: Corrosion Behavior1citations

Places of action

Chart of shared publication
Prashanth, Konda Gokuldoss
1 / 10 shared
Sivaprasad, Katakam
1 / 3 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Prashanth, Konda Gokuldoss
  • Sivaprasad, Katakam
OrganizationsLocationPeople

article

Selective Laser Melting of AlSi10Mg: Corrosion Behavior

  • Prashanth, Konda Gokuldoss
  • Sivaprasad, Katakam
  • Sellamuthu, Prabhukumar
Abstract

<jats:p>Additive Manufacturing (AM) processes can theoretically fabricate materials with any complex structures with added functionality at low costs. However, the properties of components developed by AM should not lose to the properties observed in components fabricated through conventional manufacturing methods. In this study, the corrosion resistance of AlSi10Mg alloy processed through Selective Laser Melting (SLM) in contrast to its tra-ditional counterpart, Sand-Casting (SC) was investigated. Potentiodynamic polarization tests were performed to study the electrochemical behaviour in a 3.5% NaCl solution. It was observed that the corrosion resistance of the SLM material is relatively better than the SC alloy under similar test conditions. It may be concluded that the unique solidification conditions existing during the SLM process may lead to marginally improved corrosion resistance in the alloy considered.</jats:p>

Topics
  • impedance spectroscopy
  • corrosion
  • selective laser melting
  • casting
  • solidification