People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Géber, Róbert
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Effect of Alumina Proportion on the Microstructure and Technical and Mechanical Characteristics of Zirconia-Based Porous Ceramicscitations
- 2024Porosity and pore morphology characteristics of zirconia-alumina bioceramicscitations
- 2022Preparation of an Aluminum Titania /Mullite Composite from the Raw Materials Alumina, Titania and Silica Fumecitations
Places of action
Organizations | Location | People |
---|
article
Preparation of an Aluminum Titania /Mullite Composite from the Raw Materials Alumina, Titania and Silica Fume
Abstract
<jats:p>The present work deals with the preparation of ceramic composites and the study of phase transformation. Three mixtures were prepared, the main mixture containing (80 wt%) alumina and (20 wt%) titania and the other two mixtures to which two amounts of silica fume were added at (5 and 10 wt%). The phase transformation was studied at two temperatures: 1200℃ and 1400℃. The X-ray diffraction results at 1200℃ show that the amorphous silica (silica fume) transformed into the crystalline phase cristobalite. At 1400℃, aluminum titanate formed by the reaction of alumina with titania, and mullite formed by the reaction of alumina with silica. The result of scanning electron microscopy shows that the addition of (5 wt%) silica leads to a microstructure with smaller grain size up to (500 nm), a lower porosity (20 vol%), a lower water absorption (7 wt%) and a thermal conductivity (1.514W/m.k).</jats:p>