Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

H. K., Dr. Sachidananda

  • Google
  • 4
  • 3
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Tribological behavior of alumina (Al2O3) and zirconia (ZrO2) plungers used in high pressure pumpscitations
  • 2020Design and Analysis of Suspension Strut in Automobile Vehicles1citations
  • 2020Empirical Study of Solar Absorber Metamaterial Characterization in GHz and THz Regime3citations
  • 2020Buggy Role Cage – Analysis and Design5citations

Places of action

Chart of shared publication
Sachidananda, H. K.
1 / 1 shared
Sequeira, Anil Antony
1 / 1 shared
Mohan, Mahesh
1 / 3 shared
Chart of publication period
2024
2020

Co-Authors (by relevance)

  • Sachidananda, H. K.
  • Sequeira, Anil Antony
  • Mohan, Mahesh
OrganizationsLocationPeople

article

Empirical Study of Solar Absorber Metamaterial Characterization in GHz and THz Regime

  • H. K., Dr. Sachidananda
Abstract

<jats:p>Advanced material such as composite material, metamaterial, nanomaterials and smart materials plays a significant role in degree of performance of any system as compared to conventional material and hence, they are commonly used in diverse applications such as aerospace, medical devices, sensor detection, smart solar application etc. Metamaterial is one of such artificial sub-wavelength materials to exhibit electromagnetic and optical properties that surpass or complement those accessible in nature. In this research paper, three structure of metamaterials are simulated for the solar application as an absorber to increase solar efficiency as well as to increase negative refractive index to represent wave propagation in different directions. From this study it can be concluded that all the three materials have reached maximum point of absorption in a narrow bandwidth and it is possible to obtain transverse magnetic wave if the materials are stacked. These materials can be used as frequency detector for THz applications.</jats:p>

Topics
  • impedance spectroscopy
  • composite
  • metamaterial