Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kubíček, Jaroslav

  • Google
  • 2
  • 5
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021The Influence of Hot-Dip Galvanizing on the Mechanical Properties of High Strength Steels19citations
  • 2016Welded joint of high-strength steels Weldox 700 and common grade steel S 355citations

Places of action

Chart of shared publication
Vaněrek, Jan
1 / 2 shared
Šmak, Milan
2 / 2 shared
Kala, Jiri
1 / 2 shared
Podaný, Kamil
2 / 7 shared
Mrna, Libor
1 / 5 shared
Chart of publication period
2021
2016

Co-Authors (by relevance)

  • Vaněrek, Jan
  • Šmak, Milan
  • Kala, Jiri
  • Podaný, Kamil
  • Mrna, Libor
OrganizationsLocationPeople

article

Welded joint of high-strength steels Weldox 700 and common grade steel S 355

  • Kubíček, Jaroslav
  • Mrna, Libor
  • Šmak, Milan
  • Podaný, Kamil
Abstract

High-strength steels can be effectively utilized for strengthening existing structures or to improve highly stressed elements or structural details fabricated from lower grade steel. When used together with traditional grades of steel, the favourable mechanical properties of high-strength steels open up a wide range of applications in the steel constructions of civil and engineering structures, both in primary structural elements and in individual parts. The paper is concerned with butt and fillet welded joints of components made of high-strength steel with a yield strength of 700MPa and elements made of traditional grade S355 and S235 steel. The technique for welding materials with different strengths and the choice of additive materials for welding are presented in the experimental research.

Topics
  • impedance spectroscopy
  • strength
  • steel
  • yield strength