People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Körner, Julia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Electrochemical Degradation of Molecularly Imprinted Polymers for Future Applications of Inflammation Sensing in Cochlear Implantscitations
- 2024Electrochemical Degradation of Molecularly Imprinted Polymers for Future Applications of Inflammation Sensing in Cochlear Implantscitations
- 2012Numerical Simulation of Magnetic Pulse Welding: Insights and Useful Simplifications
Places of action
Organizations | Location | People |
---|
document
Numerical Simulation of Magnetic Pulse Welding: Insights and Useful Simplifications
Abstract
The increasing demand for the use of lightweight materials and part designs, especially in the automotive industry, is a driving factor for the development of new joining techniques. One of the main challenges is joining of dissimilar materials. Magnetic pulse welding (MPW), a high-velocity, cold forming technique is a possible solution, as it is known for its ability to join dissimilar metals. To determine the potential of this technology for a certain application, simulation techniques have become a major part of the research process. This paper shows some ways how to use simulation tools effectively to analyse the coil and the field shaper-geometry as well as to study their effect on the workpiece. The predictability of current distributions, resulting magnetic pressures and general process efficiency are discussed. Furthermore it is described which simplifications may be applied in order to reduce the simulation time for transient calculations. Especially aspects of the transient force evolution during a pulse are discussed and comparisons to simplified timeharmonic results are given.