People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Weddeling, Christian
TRUMPF (Germany)
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2016Experimental and numerical investigation of increased formability in combined quasi-static and high-speed forming processescitations
- 2016Local forming of gears by indentation of sheetscitations
- 2016Reducing the stair step effect of layer manufactured surfaces by ball burnishingcitations
- 2016Workpiece positioning during magnetic pulse welding of aluminum-steel joints
- 2015Umformen faserverstärkter thermoplastischer Kunststoff-Halbzeuge mit metallischen Deckblechen für den Leichtbau
- 2015The influence of combined sheet metal forming on the increasing formability by experimental and numerical investigations
- 2015The influence of combined sheet metal forming on the increasing formability by experimental and numerical investigations
- 2015Analytical methodology for the process design of electromagnetic crimpingcitations
- 2015Joining of aluminium tubes by magnetic pulse welding
- 2014Avoiding bending in case of uniaxial tension with electromagnetic forming
- 2014Magnetic pulse welding by electromagnetic compressioncitations
- 2014Experimental investigations on the optimum driver configuration for electromagnetic sheet metal forming
- 2014Influence of Axial Workpiece Positioning during Magnetic Pulse Welding of Aluminum-Steel Joints
- 2014Electromagnetic Form-Fit Joining
- 2014Investigation of tailored pressure distributions by vaporizing tailored foils
- 2013Control of the material flow in deep drawing by the use of rolled surface textures
- 2012Elektromagnetisches Schweißen von Aluminiumblechen
- 2012Influencing factors on the strength of electromagnetically produced form-fit joints using knurled surfaces
- 2012Analytic prediction of the process parameters for form-fit joining by die-less hydroformingcitations
- 2011Umformtechnisches Fügen leichter Tragwerksstrukturen
- 2011Advanced manufacturing and design techniques for lightweight structures
- 2011Umformtechnisches Fugen leichter Tragwerksstrukturen
- 2010Innovative joining methods in lightweight designs, Part II
- 2010Agile production of sheet metal aviation components using disposable electromagnetic actuators
- 2010High speed forming 2010
- 2010Development of design principles for form-fit joints in lightweight frame structures
- 2009Innovative joining methods in lightweight designs
Places of action
Organizations | Location | People |
---|
conferencepaper
Experimental investigations on the optimum driver configuration for electromagnetic sheet metal forming
Abstract
Electromagnetic forming is a high speed forming process especially suitable for materials with high electrical conductivity such as copper or aluminum. In case of materials with comparatively low electrical conductivity (e.g. stainless steel or titanium) the use of so-called driver sheets is a common approach. Various publications proved that this way materials with low electrical conductivity and even non-conductive materials can be formed. Although the use of driver sheets is common practice, there are no or only contradicting recommendations regarding the optimum driver sheet configuration. Based on experimental investigations of the electromagnetic sheet metal forming process, this paper investigates the optimum material and thickness of the driver sheet. The results prove that aluminum should be favored over copper as driver material. The optimum driver thickness was found to be dependent on thickness and electrical conductivity of the workpiece. Even in case of a workpiece made of aluminum the use of a driver sheet could enhance the efficiency of the process.