Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lueg-Althoff, Jörn

  • Google
  • 38
  • 36
  • 309

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (38/38 displayed)

  • 2021Interface Formation during Collision Welding of Aluminumcitations
  • 2020Interface formation during collision welding of aluminum17citations
  • 2020Particle Ejection by Jetting and Related Effects in Impact Welding Processes17citations
  • 2020Joining dissimilar thin-walled tubes by magnetic pulse welding36citations
  • 2019Einfluss der Wandstärke auf das Umformverhalten und das Schweißergebnis beim Magnetpulsschweißen ; Effect of the wall thickness on the forming behavior and welding result during magnetic pulse welding3citations
  • 2019Experimental study on the magnetic pulse welding process of large aluminum tubes on steel rods7citations
  • 2019Thermal effects in dissimilar magnetic pulse welding ; Thermische Effekte beim Magnetpulsschweißen von Mischverbindungen17citations
  • 2019Magnetic pulse welding of tubular parts ; Magnetpulsschweißen von Rohren2citations
  • 2019Experimental and numerical investigations of joining by electromagnetic forming for aeronautical applications3citations
  • 2019Effect of the forming behavior on the impact flash during magnetic pulse welding of tubescitations
  • 2019Thermal effects in dissimilar magnetic pulse welding17citations
  • 2018Influence of the flyer kinetics on magnetic pulse welding of tubes51citations
  • 2018Effects of reactive interlayers in magnetic pulse weldingcitations
  • 2018Parameter identification for magnetic pulse welding applications11citations
  • 2018Effects of reactive interlayers in magnetic pulse welding ; Einfluss von reaktiven Zwischenschichten beim Magnetpulsschweißencitations
  • 2018Influence of the free compression stage on magnetic pulse welding of tubescitations
  • 2018Influence of the free compression stage on magnetic pulse welding of tubescitations
  • 2017Measurement of collision conditions in magnetic pulse welding processes ; Messung der Kollisionsbedingungen beim Magnetpulsschweißen18citations
  • 2017Measurement of collision conditions in magnetic pulse welding processes18citations
  • 2017Magnetic pulse welding of dissimilar metals in tube-to-tube configurationcitations
  • 2017Magnetic pulse welding of tubes: ensuring the stability of the inner diametercitations
  • 2017Targeted weld seam formation and energy reduction at magnetic pulse welding (MPW) ; Gezielte Nahteinstellung und Energiereduktion beim Magnetpulsschweißen5citations
  • 2017Neue Möglichkeiten zur Prozessüberwachung und Effizienzsteigerung beim Magnetpulsschweißencitations
  • 2017Targeted weld seam formation and energy reduction at magnetic pulse welding (MPW)5citations
  • 2016Measurement and analysis technologies for magnetic pulse welding: Established methods and new strategies28citations
  • 2016Magnetic pulse welding of dissimilar metals in tube-to-tube configurationcitations
  • 2016Magnetic pulse welding of tubes: Ensuring the stability of the inner diameter ; Magnetpulsschweißen von Rohren: Sicherstellung eines stabilen Innendurchmesserscitations
  • 2016Effects of Surface Coatings on the Joint Formation During Magnetic Pulse Welding in Tube-to-Cylinder Configurationcitations
  • 2016Magnetic pulse welding: Solutions for process monitoring within pulsed magnetic fields ; Magnetpulsschweißen: Lösungen für die Prozessüberwachung in gepulsten Magnetfelderncitations
  • 2016Influence of the wall thicknesses on the joint quality during magnetic pulse welding in tube-to-tube configurationcitations
  • 2016Measurement and analysis technologies for magnetic pulse welding28citations
  • 2016Magnetic pulse welding: Joining within microseconds - high strength forever ; Magnetpulsschweißen: Fügen in Mikrosekunden - Hohe Festigkeit für immercitations
  • 2016Influence of selected coatings on the welding result during Magnetic Pulse Welding (MPW) ; Einfluss ausgewählter Bauteilbeschichtungen auf das Fügeergebnis beim elektromagnetischen Pulsfügencitations
  • 2016Workpiece positioning during magnetic pulse welding of aluminum-steel jointscitations
  • 2015Joining of aluminium tubes by magnetic pulse weldingcitations
  • 2014Magnetic pulse welding by electromagnetic compression26citations
  • 2014Influence of Axial Workpiece Positioning during Magnetic Pulse Welding of Aluminum-Steel Jointscitations
  • 2012Innovative Umformverfahren für den Fahrzeugleichtbaucitations

Places of action

Chart of shared publication
Groche, Peter
3 / 25 shared
Schumacher, Eugen
3 / 3 shared
Böhme, Marcus
3 / 9 shared
Bellmann, Jörg
27 / 32 shared
Niessen, Benedikt
3 / 3 shared
Wagner, Martin Franz-Xaver
3 / 31 shared
Beyer, Eckhard
29 / 84 shared
Tekkaya, A. Erman
15 / 34 shared
Leyens, Christoph
3 / 430 shared
Böhm, Stefan
3 / 22 shared
Tekkaya, Ae
23 / 822 shared
Gies, Soeren
29 / 64 shared
Schulze, Sebastian
23 / 29 shared
Hahn, Marlon
9 / 59 shared
Schettler, Sebastian
3 / 8 shared
Dittrich, Steffen
1 / 1 shared
Guzel, Ahmet
1 / 5 shared
Rohr, Thomas
1 / 7 shared
Beu, Marcel-André
1 / 1 shared
Überschaer, F.
1 / 1 shared
Schulze, S.
4 / 22 shared
Beyer, E.
4 / 58 shared
Bayer, E.
1 / 1 shared
Bellmann, J.
3 / 5 shared
Schilling, B.
3 / 3 shared
Bellmann, Joerg
3 / 4 shared
Goebel, Gunther
3 / 5 shared
Göbel, Gunther
2 / 8 shared
Schultze, Sebastian
1 / 1 shared
Kirchhoff, Gunter
1 / 3 shared
Weddeling, Christian
4 / 27 shared
Lorenz, Amanda Leigh
1 / 1 shared
Göbel, Günther
1 / 1 shared
Lorenz, Amanda
2 / 2 shared
Göbel, G.
1 / 5 shared
Pietzka, Daniel
1 / 13 shared
Chart of publication period
2021
2020
2019
2018
2017
2016
2015
2014
2012

Co-Authors (by relevance)

  • Groche, Peter
  • Schumacher, Eugen
  • Böhme, Marcus
  • Bellmann, Jörg
  • Niessen, Benedikt
  • Wagner, Martin Franz-Xaver
  • Beyer, Eckhard
  • Tekkaya, A. Erman
  • Leyens, Christoph
  • Böhm, Stefan
  • Tekkaya, Ae
  • Gies, Soeren
  • Schulze, Sebastian
  • Hahn, Marlon
  • Schettler, Sebastian
  • Dittrich, Steffen
  • Guzel, Ahmet
  • Rohr, Thomas
  • Beu, Marcel-André
  • Überschaer, F.
  • Schulze, S.
  • Beyer, E.
  • Bayer, E.
  • Bellmann, J.
  • Schilling, B.
  • Bellmann, Joerg
  • Goebel, Gunther
  • Göbel, Gunther
  • Schultze, Sebastian
  • Kirchhoff, Gunter
  • Weddeling, Christian
  • Lorenz, Amanda Leigh
  • Göbel, Günther
  • Lorenz, Amanda
  • Göbel, G.
  • Pietzka, Daniel
OrganizationsLocationPeople

conferencepaper

Effects of Surface Coatings on the Joint Formation During Magnetic Pulse Welding in Tube-to-Cylinder Configuration

  • Gies, Soeren
  • Tekkaya, Ae
  • Bellmann, Jörg
  • Lueg-Althoff, Jörn
  • Beyer, Eckhard
  • Goebel, Gunther
  • Göbel, Gunther
Abstract

Magnetic Pulse Welding (MPW) is a joining technique favorable for the generation of strong atomic bonded areas between different metals, e.g. aluminum and steel. Brittle intermetallic phases can be avoided due to the high-speed collision and the absence of external heat. The demand for the use of this technique in industries like automotive and plant engineering rises. However, workpieces used in these fields are often coated, e.g. in order to improve the corrosion resistance. Since the weld quality depends on the material’s behavior at the collision zone, surface layers in that region have to be taken into account as well. This work investigates the influences of different coating types. Aluminum to steel welding is used as an example system. On the inner steel part (C45) coatings like zinc, nickel and chrome are applied, while the aluminum flyer tubes (EN AW-6060) are anodized, chromated and passivated. Welding tests are performed using two different welding systems with varying discharging frequencies and four geometrical part setups. For all combinations, the flyer velocity during the process is measured by Photon Doppler Velocimetry (PDV). By using the uncoated material combination as a reference, the removal of surface layers due to jetting is analyzed. Finally, the weld quality is characterized in peel tests, shear-push tests and by the help of metallographic analysis. It is found that certain coatings improve the joint formation, while others are obstructive for the performance of MPW. Some coatings have no influence on the joining process at all.

Topics
  • impedance spectroscopy
  • surface
  • nickel
  • corrosion
  • phase
  • aluminium
  • zinc
  • steel
  • intermetallic
  • joining