Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ostwald, Richard

  • Google
  • 10
  • 20
  • 51

Helmut Schmidt University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2024Enhancing damage prediction in bulk metal forming through machine learning-assisted parameter identification1citations
  • 2024Comparative Analysis of Phase-Field and Intrinsic Cohesive Zone Models for Fracture Simulations in Multiphase Materials with Interfaces: Investigation of the Influence of the Microstructure on the Fracture Propertiescitations
  • 2022ADAPT — A Diversely Applicable Parameter Identification Tool: Overview and full-field application examples22citations
  • 2021A computational framework for gradient‐enhanced damagecitations
  • 2020Prediction of ductile damage in the process chain of caliber rolling and forward rod extrusion6citations
  • 2020Gradient-enhanced modelling of damage for rate-dependent material behaviour-a parameter identification framework9citations
  • 2020Influence of anisotropic damage evolution on cold forging4citations
  • 2020Gradient-enhanced modelling of damage for rate-dependent material behaviour - a parameter identification frameworkcitations
  • 2020Prediction and analysis of damage evolution during caliber rolling and subsequent cold forward extrusion9citations
  • 2015Modelling and simulation of phase transformations in elasto-plastic polycrystalscitations

Places of action

Chart of shared publication
Menzel, Andreas
5 / 52 shared
Schulte, Robin
7 / 8 shared
Schowtjak, Alexander
5 / 8 shared
Clausmeyer, Till
5 / 51 shared
Tekkaya, Ae
5 / 822 shared
Gerlach, Jan
1 / 1 shared
Rauter, Natalie
1 / 7 shared
Lammering, Rolf
1 / 5 shared
Rezaei, Shahed
1 / 1 shared
Koopas, Rasoul Najafi
1 / 1 shared
Hirt, Gerhard
2 / 14 shared
Hering, Oliver
3 / 24 shared
Pavliuchenko, Pavlo
1 / 1 shared
Wang, Shuhan
2 / 2 shared
Lohmar, Johannes
2 / 6 shared
Gitschel, Robin
1 / 5 shared
Walther, Prof. Dr.-Ing. Frank
1 / 8 shared
Mosler, Joern
1 / 4 shared
Moehring, Kerstin
1 / 1 shared
Langenfeld, Kai
1 / 1 shared
Chart of publication period
2024
2022
2021
2020
2015

Co-Authors (by relevance)

  • Menzel, Andreas
  • Schulte, Robin
  • Schowtjak, Alexander
  • Clausmeyer, Till
  • Tekkaya, Ae
  • Gerlach, Jan
  • Rauter, Natalie
  • Lammering, Rolf
  • Rezaei, Shahed
  • Koopas, Rasoul Najafi
  • Hirt, Gerhard
  • Hering, Oliver
  • Pavliuchenko, Pavlo
  • Wang, Shuhan
  • Lohmar, Johannes
  • Gitschel, Robin
  • Walther, Prof. Dr.-Ing. Frank
  • Mosler, Joern
  • Moehring, Kerstin
  • Langenfeld, Kai
OrganizationsLocationPeople

thesis

Modelling and simulation of phase transformations in elasto-plastic polycrystals

  • Ostwald, Richard
Abstract

ie vorliegende Arbeit behandelt einen neuartigen Modellierungsrahmen zur Simulation von austenitisch-martensitischen Phasentransformationen in Formgedächtnislegierungen (SMA) und TRIP-Stählen. Das Ziel der Arbeit ist die Entwicklung und Ausarbeitung eines generalisierten Modells, welches das charakteristische makroskopische Verhalten sowohl von SMA als auch von TRIP-Stahl abbildet. Als Basis für die Formulierung dient ein skalarwertiges, thermodynamisch konsistentes, auf statistischer Physik basierendes Modell für die Simulation von SMA. Im Verlauf dieser Arbeit wird das Modell in affine und nicht-affine Microsphere-Formulierungen eingebettet um das polykristalline Materialverhalten abzubilden und um die Simulation dreidimensionaler Randwertprobleme zu ermöglichen. Darüberhinaus wird eine Kopplung an Plastizität vorgestellt, welche zusätzlich die Abbildung des Verhaltens von TRIP-Stahl ermöglicht. Abschließend wird die Implementierung eines dreidimensionalen Phasentransformationsmodells für finite Deformationen mit dem Fokus auf repräsentative Transformationsrichtungen in einem thermo-elastoplastischen Framework gezeigt. ; Abstract ; In this work, a new framework for the simulation of shape memory alloys (SMA) and TRIP steels undergoing martensite-austenite phase-transformations is introduced. The goal is the derivation and elaboration of a generalised model which facilitates the reflection of the characteristic macroscopic behaviour of SMA as well as of TRIP steels. The foundation of the overall formulation is a scalar-valued, thermodynamically consistent, statistical physics based model for the simulation of SMA. As this work proceeds, the model is implemented in affine and non-affine micro-sphere formulations in order to capture polycrystalline behaviour and to simulate three-dimensional boundary value problems. Moreover, a coupling to plasticity is introduced, additionally enabling the capturing of the macroscopic behaviour of TRIP steels. Finally, the implementation of a three-dimensional finite-deformation phase-transformation model that focuses on representative transformation directions is elaborated in a thermo-elastoplastic framework.

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • simulation
  • steel
  • plasticity
  • discrete element method