People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tekelenburg, Eelco K.
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Cation Influence on Hot-Carrier Relaxation in Tin Triiodide Perovskite Thin Filmscitations
- 2024Quasi-2D Lead–Tin Perovskite Memory Devices Fabricated by Blade Coatingcitations
- 2024Mechanism of Hot-Carrier Photoluminescence in Sn-Based Perovskitescitations
- 2024Metal-Solvent Complex Formation at the Surface of InP Colloidal Quantum Dotscitations
- 2023The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2023The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskitescitations
- 2023Impact of two diammonium cations on the structure and photophysics of layered Sn-based perovskitescitations
- 2022The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
- 2022The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processescitations
- 2022The Origin of Broad Emission in ⟨100»Two-Dimensional Perovskites:Extrinsic vs Intrinsic Processescitations
- 2022The Origin of Broad Emission in â ¨100»Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes
- 2020Extrinsic nature of the broad photoluminescence in lead iodide-based Ruddlesden-Popper perovskitescitations
Places of action
Organizations | Location | People |
---|
document
The Origin of Broad Emission in ⟨100⟩ Two-Dimensional Perovskites: Extrinsic vs Intrinsic Processes.
Abstract
2D metal halide perovskites can show narrow and broad emission bands (BEs), and the latter's origin is hotly debated. A widespread opinion assigns BEs to the recombination of intrinsic self-trapped excitons (STEs), whereas recent studies indicate they can have an extrinsic defect-related origin. Here, we carry out a combined experimental-computational study into the microscopic origin of BEs for a series of prototypical phenylethylammonium-based 2D perovskites, comprising different metals (Pb, Sn) and halides (I, Br, Cl). Photoluminescence spectroscopy reveals that all of the compounds exhibit BEs. Where not observable at room temperature, the BE signature emerges upon cooling. By means of DFT calculations, we demonstrate that emission from halide vacancies is compatible with the experimentally observed features. Emission from STEs may only contribute to the BE in the wide-band-gap Br- and Cl-based compounds. Our work paves the way toward a complete understanding of broad emission bands in halide perovskites that will facilitate the fabrication of efficient narrow and white light emitting devices.