People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raufaste, Christophe
Université Côte d'Azur
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2022Collapse of a hemicatenoid bounded by a solid wall: instability and dynamics driven by surface Plateau border friction.
- 2022Collapse of a hemicatenoid bounded by a solid wall: instability and dynamics driven by surface Plateau border friction.
- 2011Understanding and predicting viscous, elastic, plastic flowscitations
- 2010Discrete rearranging disordered patterns: Prediction of elastic and plastic behaviour, and application to two-dimensional foams.
- 2008Numerical modelling of foam Couette flowscitations
Places of action
Organizations | Location | People |
---|
document
Collapse of a hemicatenoid bounded by a solid wall: instability and dynamics driven by surface Plateau border friction.
Abstract
The collapse of a catenoidal soap film when the rings supporting it are moved beyond a critical separation is a classic problem in interface motion in which there is a balance between surface tension and the inertia of the surrounding air, with film viscosity playing only a minor role. Recently [Goldstein et al., Phys. Rev. E, 2021, 104, 035105], we introduced a variant of this problem in which the catenoid is bisected by a glass plate located in a plane of symmetry perpendicular to the rings, producing two identical hemicatenoids, each with a surface Plateau border (SPB) on the glass plate. Beyond the critical ring separation, the hemicatenoids collapse in a manner qualitatively similar to the bulk problem, but their motion is governed by the frictional forces arising from viscous dissipation in the SPBs. We present numerical studies of a model that includes classical laws in which the frictional force fv for SPB motion on wet surfaces is of the form fv ∼ Can, where Ca is the capillary number. Our experimental data on the temporal evolution of this process confirms the expected value n = 2/3 for mobile surfactants and stress-free interfaces. This study can help explain the fragmentation of bubbles inside very confined geometries such as porous materials or microfluidic devices.