People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Feldmann, Sascha
École Polytechnique Fédérale de Lausanne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Metal doping of halide perovskite nanocrystals under ambient conditions
- 2024From Chalcogen Bonding to S–π Interactions in Hybrid Perovskite Photovoltaicscitations
- 2023Materials for chiral light controlcitations
- 2023Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskitescitations
- 2023Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskitescitations
- 2023Fundamentals, Advances, and Artifacts in Circularly Polarized Luminescence (CPL) Spectroscopycitations
- 2023Local symmetry breaking drives picosecond spin domain formation in polycrystalline halide perovskite films.
- 2022A mechanistic study of the dopant-induced breakdown in halide perovskites using solid state energy storage devices.
- 2022Luminescence Enhancement Due to Symmetry Breaking in Doped Halide Perovskite Nanocrystals.citations
- 2021Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskites
- 2021Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskitescitations
- 2021Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskitescitations
- 2021Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskitescitations
- 2021Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskites.
- 2021Manganese doping for enhanced magnetic brightening and circular polarization control of dark excitons in paramagnetic layered hybrid metal-halide perovskites.
- 2021Tailored Local Bandgap Modulation as a Strategy to Maximize Luminescence Yields in Mixed‐Halide Perovskites
- 2020Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescencecitations
- 2020How Exciton Interactions Control Spin-Depolarization in Layered Hybrid Perovskitescitations
- 2020Control of crystal symmetry breaking with halogen substituted benzylammonium in layered hybrid metal-halide perovskitescitations
Places of action
Organizations | Location | People |
---|
article
Impact of Orientational Glass Formation and Local Strain on Photo-Induced Halide Segregation in Hybrid Metal-Halide Perovskites
Abstract
Bandgap tuning of hybrid metal-halide perovskites by halide substitution holds promise for tailored light absorption in tandem solar cells and emission in LEDs. However, the impact of halide substitution on the crystal structure and the fundamental mechanism of photo-induced halide segregation remain open questions. Here, using a combination of temperature-dependent X-ray diffraction and calorimetry measurements, we report the emergence of a disorder- and frustration-driven orientational glass for a wide range of compositions in CH3NH3Pb(ClxBr1-x)3. Using temperature-dependent photoluminescence measurements, we find a correlation between halide segregation under illumination and local strains from the orientational glass. We observe no glassy behaviour in CsPb(ClxBr1-x)3, highlighting the importance of A-site cation for the structure and optoelectronic properties. Using first-principles calculations, we identify the local preferential alignment of the organic cations as the glass formation mechanism. Our findings rationalise the superior photostability of mixed-cation metal-halide perovskites and provide guidelines for further stabilisation strategies.