People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nikolka, Mark
University of Cambridge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Effects of Processing-Induced Contamination on Organic Electronic Devices.
- 2023Effects of processing‐induced contamination on organic electronic devicescitations
- 2020Anisotropy of Charge Transport in a Uniaxially Aligned Fused Electron-Deficient Polymer Processed by Solution Shear Coating.
- 2020Linking Glass-Transition Behavior to Photophysical and Charge Transport Properties of High-Mobility Conjugated Polymers
- 2019High-mobility, trap-free charge transport in conjugated polymer diodescitations
- 2017High operational and environmental stability of high-mobility conjugated polymer field-effect transistors achieved through the use of molecular additivescitations
- 2017High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives.
- 2017Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymerscitations
- 2016High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additivescitations
- 20162D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion.
- 2014Approaching disorder-free transport in high-mobility conjugated polymers.
Places of action
Organizations | Location | People |
---|
article
Linking Glass-Transition Behavior to Photophysical and Charge Transport Properties of High-Mobility Conjugated Polymers
Abstract
The measurement of the mechanical properties of conjugated polymers can reveal highly relevant information linking optoelectronic properties to underlying microstructures and the knowledge of the glass transition temperature ( Tg ) is paramount for informing the choice of processing conditions and for interpreting the thermal stability of devices. In this work, we use dynamical mechanical analysis (DMA) to determine Tg of a range of state-of-the-art conjugated polymers with different degrees of crystallinity that are widely studied for applications in organic field-effect transistors (OFETs). We compare our measured values for Tg to the theoretical value predicted by a recent work based on the concept of effective mobility ζ. The comparison shows that for conjugated polymers with a modest length of the monomer units, the Tg values agree well with theoretical predictions. However, for the near-amorphous, indacenodithiophene–benzothiadiazole (IDT-BT) family of polymers with more extended backbone units, values for Tg appear to be significantly higher predicted by theory. We find instead that values for Tg are correlated with the sub-bandgap optical absorption suggesting the possible role of the interchain short contacts within materials’ amorphous domains.