People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chambon, Sylvain
CEA Saclay
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Electronic Doping in Perovskite Solar Cellscitations
- 2024Three Terminal Organic-Silicon Tandem Models
- 2024Unmasking The Magic of Magic Blue in Perovskite Dopingcitations
- 2023Toward High Efficiency Water Processed Organic Photovoltaics: Controlling the Nanoparticle Morphology with Surface Energiescitations
- 2023Toward High Efficiency Water Processed Organic Photovoltaics: Controlling the Nanoparticle Morphology with Surface Energiescitations
- 2023Redox-active ions unlock substitutional doping in halide perovskites ; Mater. Horiz.citations
- 2023Redox-active ions unlock substitutional doping in halide perovskitescitations
- 2021Phosphonium-based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self-assembly and photovoltaic performancescitations
- 2021Organic semiconductor colloids: From the knowledge acquired in photovoltaics to the generation of solar hydrogen fuelcitations
- 2020Phosphonium‐based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self‐assembly and photovoltaic performancescitations
- 2020Phosphonium-based polythiopheneconjugated polyelectrolytes with differentsurfactant counterions: thermal properties,self-assembly and photovoltaic performancescitations
- 2020Phosphonium-based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self-assembly and photovoltaic performances
- 2018Surface engineering of ITO electrode with a functional polymer for PEDOT:PSS-free organic solar cellscitations
- 2018Surface engineering of ITO electrode with a functional polymer for PEDOT:PSS-free organic solar cellscitations
- 2014Sensitivity enhancement of a flexible MEMS strain sensor by a field effect transistor in an all organic approachcitations
- 2012Influence of octanedithiol on the nanomorphology of PCPDTBT:PCBM blends studied by solid-state NMRcitations
- 2011Influence of octanedithiol on the nanomorphology of PCPDTBT:PCBM blends studied by solid-state NMR
- 2011Identification and Quantification of Defect Structures in Poly(2,5-thienylene vinylene) Derivatives Prepared via the Dithiocarbamate Precursor Route by Means of NMR Spectroscopy on (13)C-Labeled Polymers
- 2011Solid-State NMR as a Tool to Describe and Quantify the Morphology of Photoactive Layers Used in Plastic Solar Cellscitations
Places of action
Organizations | Location | People |
---|
article
Phosphonium-based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self-assembly and photovoltaic performances
Abstract
© 2020 Society of Industrial Chemistry Phosphonium-based polythiophene conjugated polyelectrolytes (CPEs) with three different counterions (dodecylsulfate, octylsulfate and perfluorooctane sulfonate) are synthesized to determine how the nature of the counterion affects the thermal properties, the self-assembly in thin films and the performance as the cathode interfacial layer in polymer solar cells (PSCs). The counterion has a significant effect on the thermal properties of the CPEs, affecting both their glass transition and crystalline behaviour. Grazing-incidence wide-angle X-ray scattering studies also indicate that changing the nature of the counterion influences the microstructural organization in thin films (face-on versus edge-on orientation). The affinity of the CPEs with the underlying photoactive layer in PSCs is highly correlated with the counterion species. Finally, in addition to an increase of the power conversion efficiency of ca 15% when using these CPEs as cathode interfacial layers in PSCs, a higher device stability is noted, compared to a reference device with a calcium interlayer. © 2020 Society of Industrial Chemistry.