People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ritchie, David
Swansea University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Determining the laser absorptivity of Ti-6Al-4V during selective laser melting by calibrated melt pool simulationcitations
- 2023Advances in Multiscale Modelling of Metal Additive Manufacturing
- 2020A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors.
- 2019Line-defect photonic crystal terahertz quantum cascade lasercitations
- 2019Fine Microstructure Control in Additively Manufactured Stainless Steel via Layerwise Rotation of The Scan Direction
- 2019Corrosion Studies of Additive Manufactured Alpha-Beta Ti Alloys
- 2019Corrosion Studies of Additively Manufactured Ti Alpha-Beta Alloys
- 2019Measurement of Laser Absorptivity by Calibrated Melt Pool Simulation
- 2019Residual Stress in Additive Manufacture
- 2018Systematic Study of Ferromagnetism in CrxSb2-xTe3 Topological Insulator Thin Films using Electrical and Optical Techniques.
- 2018Imaging the Zigzag Wigner Crystal in Confinement-Tunable Quantum Wirescitations
- 2011Friction stir blind riveting: A novel joining process for automotive light alloyscitations
Places of action
Organizations | Location | People |
---|
article
A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors.
Abstract
Despite sustained research, application of lead halide perovskites in field-effect transistors (FETs) has substantial concerns in terms of operational instabilities and hysteresis effects which are linked to its ionic nature. Here, we investigate the mechanism behind these instabilities and demonstrate an effective route to suppress them to realize high-performance perovskite FETs with low hysteresis, high threshold voltage stability (ΔVt < 2 V over 10 hours of continuous operation), and high mobility values >1 cm2/V·s at room temperature. We show that multiple cation incorporation using strain-relieving cations like Cs and cations such as Rb, which act as passivation/crystallization modifying agents, is an effective strategy for reducing vacancy concentration and ion migration in perovskite FETs. Furthermore, we demonstrate that treatment of perovskite films with positive azeotrope solvents that act as Lewis bases (acids) enables a further reduction in defect density and substantial improvement in performance and stability of n-type (p-type) perovskite devices.