People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pazos-Outón, Luis M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2019Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices.
- 2019Back-Contact Perovskite Solar Cells
- 2016Photon recycling in lead iodide perovskite solar cells.
- 2016Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water.
Places of action
Organizations | Location | People |
---|
article
Back-Contact Perovskite Solar Cells
Abstract
Interdigitated back-contact (IBC) architectures are the best performing technology in crystalline Si (c-Si) photovoltaics (PV). Although single junction perovskite solar cells have now surpassed 23% efficiency, most of the research has mainly focussed on planar and mesostructured architectures. The number of studies involving IBC devices is still limited and the proposed architectures are unfeasible for large scale manufacturing. Here we discuss the importance of IBC solar cells as a powerful tool for investigating the fundamental working mechanisms of perovskite materials. We show a detailed fabrication protocol for IBC perovskite devices that does not involve photolithography and metal evaporation. The interview is available at https://youtu.be/nvuNC29TvOY.