People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jia, Quanxi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Anisotropic Properties of Epitaxial Ferroelectric Lead-Free 0.5[Ba(Ti0.8Zr0.2)O3]-0.5(Ba0.7Ca0.3)TiO3 Filmscitations
- 2023Thin-film design of amorphous hafnium oxide nanocomposites enabling strong interfacial resistive switching uniformity
- 20193D strain-induced superconductivity in La2CuO4+δ using a simple vertically aligned nanocomposite approach.
- 20193D strain-induced superconductivity in La2CuO4+δ using a simple vertically aligned nanocomposite approachcitations
- 2019Competing Interface and Bulk Effect-Driven Magnetoelectric Coupling in Vertically Aligned Nanocomposites.
- 2011Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced straincitations
Places of action
Organizations | Location | People |
---|
article
3D strain-induced superconductivity in La2CuO4+δ using a simple vertically aligned nanocomposite approach.
Abstract
A long-term goal for superconductors is to increase the superconducting transition temperature, T C. In cuprates, T C depends strongly on the out-of-plane Cu-apical oxygen distance and the in-plane Cu-O distance, but there has been little attention paid to tuning them independently. Here, in simply grown, self-assembled, vertically aligned nanocomposite thin films of La2CuO4+δ + LaCuO3, by strongly increasing out-of-plane distances without reducing in-plane distances (three-dimensional strain engineering), we achieve superconductivity up to 50 K in the vertical interface regions, spaced ~50 nm apart. No additional process to supply excess oxygen, e.g., by ozone or high-pressure oxygen annealing, was required, as is normally the case for plain La2CuO4+δ films. Our proof-of-concept work represents an entirely new approach to increasing T C in cuprates or other superconductors.