Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dhakal, Prof. Dr. Hom N.

  • Google
  • 2
  • 6
  • 0

University of Portsmouth

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Property changes in plant fibres during the processing of bio-based compositescitations
  • 2018Mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocompositescitations

Places of action

Chart of shared publication
Shah, Du
2 / 23 shared
Bourmaud, A.
2 / 14 shared
Beaugrand, J.
2 / 5 shared
Zhang, Z.
1 / 62 shared
Almansour, F.
1 / 1 shared
Berzin, F.
1 / 1 shared
Chart of publication period
2020
2018

Co-Authors (by relevance)

  • Shah, Du
  • Bourmaud, A.
  • Beaugrand, J.
  • Zhang, Z.
  • Almansour, F.
  • Berzin, F.
OrganizationsLocationPeople

article

Mechanical properties of leaf sheath date palm fibre waste biomass reinforced polycaprolactone (PCL) biocomposites

  • Dhakal, Prof. Dr. Hom N.
  • Zhang, Z.
  • Shah, Du
  • Bourmaud, A.
  • Beaugrand, J.
  • Almansour, F.
  • Berzin, F.
Abstract

Date palm fibres are one of the most available natural fibres in North Africa and the Middle East. A significant amount of date palm fibres biomass is wasted annually and only limited amounts are used in low value products. In this study, tensile and low-velocity impact responses of biodegradable, lignocellulosic biomass reinforced polycaprolactone (PCL) biocomposites are reported. Two different types of laminates reinforced with date palm fibre obtained from agriculture waste were manufactured using an extrusion process. The influence of processing parameters, such as screw rotation speed on the tensile and low-velocity impact damage characteristics have been investigated. The tensile strength increased for neat PCL from 19 MPa to 25 MPa with 28 wt.% reinforcement of date palm fibres. Similarly, the tensile modulus for neat PCL was increased from 140 MPa to 282 MPa upon reinforcement. The screw rotation speed showed a moderate effect on palm fibre morphologies, and slight effect on tensile properties of the biocomposites. Specimens with lower incident energy of 25 J achieved better impact resistance compared to that of 50 J. The impact damage of biocomposites analysed through scanning electron microscopy (SEM) on the fractured surfaces showed various modes of damage. The biocomposites developed in this work can be used as an economically and environmentally attractive alternative materials for lightweight applications in automotive and marine sectors.

Topics
  • impedance spectroscopy
  • surface
  • scanning electron microscopy
  • extrusion
  • strength
  • tensile strength
  • impact response