People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gunkel, Ilja
European Commission
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024The Role of Interfacial Effects in the Impedance of Nanostructured Solid Polymer Electrolytes
- 2023Rendering Polyurethane Hydrophilic for Efficient Cellulose Reinforcement in Melt‐Spun Nanocomposite Fiberscitations
- 2023Directed Self-Assembly of Diamond Networks in Triblock Terpolymer Films on Patterned Substratescitations
- 2020Melt-spun nanocomposite fibers reinforced with aligned tunicate nanocrystalscitations
- 2020Tuning the properties of a UV-polymerized, cross-linked solid polymer electrolyte for lithium batteriescitations
- 2020Tuning the Properties of a UV-Polymerized, Cross-Linked Solid Polymer Electrolyte for Lithium Batteriescitations
- 2019Metasurfaces Atop Metamaterials: Surface Morphology Induces Linear Dichroism in Gyroid Optical Metamaterials.
- 2018Controlling Self-Assembly in Gyroid Terpolymer Films By Solvent Vapor Annealing.
- 2018Controlling Self-Assembly in Gyroid Terpolymer Films By Solvent Vapor Annealing.
- 2017Optical Imaging of Large Gyroid Grains in Block Copolymer Templates by Confined Crystallization.
- 2017Structural behavior of cylindrical polystyrene-block-poly(ethylene-butylene)-block-polystyrene (SEBS) triblock copolymer containing MWCNTscitations
Places of action
Organizations | Location | People |
---|
article
Controlling Self-Assembly in Gyroid Terpolymer Films By Solvent Vapor Annealing.
Abstract
The efficacy with which solvent vapor annealing (SVA) can control block copolymer self-assembly has so far been demonstrated primarily for the simplest class of copolymer, the linear diblock copolymer. Adding a third distinct block—thereby creating a triblock terpolymer—not only provides convenient access to complex continuous network morphologies, particularly the gyroid phases, but also opens up a route toward the fabrication of novel nanoscale devices such as optical metamaterials. Such applications, however, require the generation of well-ordered 3D continuous networks, which in turn requires a detailed understanding of the SVA process in terpolymer network morphologies. Here, in situ grazing-incidence small-angle X-ray scattering (GISAXS) is employed to study the self-assembly of a gyroid-forming triblock terpolymer during SVA, revealing the effects of several key SVA parameters on the morphology, lateral order, and, in particular, its preservation in the dried film. The robustness of the terpolymer gyroid morphology is a key requirement for successful SVA, allowing the exploration of annealing parameters which may enable the generation of films with long-range order, e.g., for optical metamaterial applications.