People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Savenije, Tom J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2024Orthogonal Electrochemical Stability of Bulk and Surface in Lead Halide Perovskite Thin Films and Nanocrystalscitations
- 2024Unraveling the Positive Effects of Glycine Hydrochloride on the Performance of Pb–Sn-Based Perovskite Solar Cells
- 2024Unraveling the Positive Effects of Glycine Hydrochloride on the Performance of Pb–Sn-Based Perovskite Solar Cells
- 2024Alleviating nanostructural phase impurities enhances the optoelectronic properties, device performance and stability of cesium-formamidinium metal–halide perovskitescitations
- 2023Crystallization Process for High-Quality Cs0.15FA0.85PbI2.85Br0.15Film Deposited via Simplified Sequential Vacuum Evaporationcitations
- 2022Traps in the spotlightcitations
- 2022Traps in the spotlight: How traps affect the charge carrier dynamics in Cs2AgBiBr6 perovskite
- 2022Perovskite Solar Cells: Stable under Space Conditionscitations
- 2021Recombination and localization: Unfolding the pathways behind conductivity losses in Cs2AgBiBr6 thin films: Unfolding the pathways behind conductivity losses in Cs2AgBiBr6 thin films
- 2021Recombination and localization: Unfolding the pathways behind conductivity losses in Cs2AgBiBr6 thin filmscitations
- 2020Charge Carrier Dynamics upon Sub-bandgap Excitation in Methylammonium Lead Iodide Thin Films: Effects of Urbach Tail, Deep Defects, and Two-Photon Absorptioncitations
- 2020Quantifying Charge-Carrier Mobilities and Recombination Rates in Metal Halide Perovskites from Time-Resolved Microwave Photoconductivity Measurementscitations
- 2020Charge Carrier Dynamics upon Sub-bandgap Excitation in Methylammonium Lead Iodide Thin Filmscitations
- 2019Comparing the calculated fermi level splitting with the open-circuit voltage in various perovskite cellscitations
- 2019Charge Carriers Are Not Affected by the Relatively Slow-Rotating Methylammonium Cations in Lead Halide Perovskite Thin Filmscitations
- 2019The importance of relativistic effects on two-photon absorption spectra in metal halide perovskitescitations
- 2019Reversible Removal of Intermixed Shallow States by Light Soaking in Multication Mixed Halide Perovskite Films.
- 2019Charge Carriers Are Not Affected by the Relatively Slow-Rotating Methylammonium Cations in Lead Halide Perovskite Thin Films.
- 2018Maximizing and stabilizing luminescence from halide perovskites with potassium passivationcitations
- 2018Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
- 2018Partially replacing Pb2+ by Mn2+ in hybrid metal halide perovskitescitations
- 2018Partially replacing Pb 2+ by Mn 2+ in hybrid metal halide perovskites:Structural and electronic propertiescitations
- 2018Band-Like Charge Transport in Cs2AgBiBr6 and Mixed Antimony-Bismuth Cs2AgBi1- xSbxBr6 Halide Double Perovskitescitations
- 2017Direct-indirect character of the bandgap in methylammonium lead iodide perovskite.
- 2017Vapour-Deposited Cesium Lead Iodide Perovskitescitations
- 2017Direct-indirect character of the bandgap in methylammonium lead iodide perovskitecitations
- 2017The Impact of Phase Retention on the Structural and Optoelectronic Properties of Metal Halide Perovskites.
- 2017Vapour-Deposited Cesium Lead Iodide Perovskites: Microsecond Charge Carrier Lifetimes and Enhanced Photovoltaic Performance.
- 2016The Impact of Phase Retention on the Structural and Optoelectronic Properties of Metal Halide Perovskitescitations
- 2016Strontium Insertion in Methylammonium Lead Iodidecitations
- 2016The Impact of Phase Retention on the Structural and Optoelectronic Properties of Metal Halide Perovskites.
- 2015Charge Carriers in Planar and Meso-Structured Organic-Inorganic Perovskitescitations
- 2015Mechanism of Charge Transfer and Recombination Dynamics in Organo Metal Halide Perovskites and Organic Electrodes, PCBM, and Spiro-OMeTADcitations
- 2015Mechanism of Charge Transfer and Recombination Dynamics in Organo Metal Halide Perovskites and Organic Electrodes, PCBM, and Spiro-OMeTAD: Role of Dark Carriers.citations
- 2014Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond-Long Balanced Mobilities, and Slow Recombinationcitations
- 2007Photosensitization of TiO2 and SnO2 by artificial self-assembling mimics of the natural chlorosomal bacteriochlorophyllscitations
Places of action
Organizations | Location | People |
---|
document
Maximizing and stabilizing luminescence from halide perovskites with potassium passivation
Abstract
Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability2 (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can approach the efficiency limits in tandem solar cells, coloured-light-emitting diodes and other optoelectronic applications.