Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Watson, J. M.

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021A new high-frequency eddy current technique for detection and imaging of flaws in carbon fibre-reinforced polymer materialscitations

Places of action

Chart of shared publication
Liang, C. W.
1 / 3 shared
Sexton, J.
1 / 3 shared
Missous, Mohamed
1 / 28 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Liang, C. W.
  • Sexton, J.
  • Missous, Mohamed
OrganizationsLocationPeople

article

A new high-frequency eddy current technique for detection and imaging of flaws in carbon fibre-reinforced polymer materials

  • Liang, C. W.
  • Watson, J. M.
  • Sexton, J.
  • Missous, Mohamed
Abstract

<p>Using a high-frequency (50 kHz-4 MHz) alternating current field measurement (ACFM)-style inspection, non-destructive imaging of carbon fibre-reinforced polymers (CFRPs) was performed for the detection and evaluation of flaws developed during their manufacture or in-service use. This was achieved using quantum well Hall-effect (QWHE) sensors, which have proven suitability for use in different non-destructive testing and evaluation (NDT&amp;E) applications based on their high sensitivity (they require lower strength applied fields and can detect smaller perturbations in the magnetic field), high linearity (high contrast and imaging evaluation capabilities), wide dynamic range (making them less sensitive to offset and lift-off variations), wide frequency operating range (DC to MHz) and compact size (5-70 microns depending on the application). Their advanced III-V semiconductor materials and design enable these characteristics. Their low capacitance allows them to be operated at significantly higher frequencies than coils of comparable sensitivity or size. As such, the inherent advantages of QWHE sensors have been used in conjunction with a high-frequency ACFM-style magnetic imaging inspection technique, which is referred to as quantum well eddy current field measurement (QW-ECFM) in this paper. Here, the fundamentals of this new technique are outlined, as well as the outcomes of such a technique for evaluating CFRP materials, where individual fibre bundles have been resolved in high detail with high contrast. In addition, the ability to detect fibre misalignment has been shown, suggesting technique sensitivity to 3D orientations of fibre for better material qualification and the detection of delamination down to 2 mm in diameter. Therefore, this paper aims to provide an overview of this new QW-ECFM technique and summarise its performance for the detection and evaluation of various CFRP material flaws that are commonly found during manufacture and service.</p>

Topics
  • impedance spectroscopy
  • polymer
  • Carbon
  • laser emission spectroscopy
  • strength
  • III-V semiconductor