Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Shaib, Mohamed El

  • Google
  • 1
  • 2
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Predicting acoustic emission attenuation in small steel blocks using a ray tracing technique4citations

Places of action

Chart of shared publication
Reuben, Bob
1 / 32 shared
Lim, Theodore
1 / 2 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Reuben, Bob
  • Lim, Theodore
OrganizationsLocationPeople

article

Predicting acoustic emission attenuation in small steel blocks using a ray tracing technique

  • Reuben, Bob
  • Shaib, Mohamed El
  • Lim, Theodore
Abstract

<p>Acoustic emission (AE) is a term used for structure-borne elastic waves generated within, or on the surface of, a solid as a result of events such as particle impingement, cracking and sliding or rolling contact. The waves are normally detected using an array of surface-mounted sensors and so structures, processes and machinery can conveniently be monitored using the array, provided that the signals at the sensors can be interpreted in terms of the generating event(s). For signal interpretation in real structures, it is generally not practicable to solve the wave equation for all possible modes of AE propagation from source to sensor and so the current work is aimed at simulating such propagation using a ray tracing technique. As the attenuation of AE signals is affected not only by the material properties but also by the geometry of the object and the type of surrounding media, knowledge of the attenuation is essential to ensure that sensors can be placed appropriately on large or complex structures.</p><p>The main purpose of this work is to establish a computationally efficient way of predicting the attenuation of AE in complex structures using 3D solid modelling and a ray tracing technique to simulate surface, bulk and combined surface and bulk wave propagation in the solid. This paper is confined to some relatively simple structures with the assumption of total reflection at boundaries. Four different solid steel shapes of varying dimensions have been used and attenuation has been measured and simulated using bulk and surface ray tracing. Adjustments have been made to the model parameters in order to fit the simulation to the measurements. Surface wave, bulk wave and combined surface and bulk wave simulations all give good agreement with the measured results and exhibit the same general differences as the block shape changes. To investigate more subtle changes in the measured results, such as the effect of the environment on reflection at the boundaries, and to investigate the blending of internal and surface simulations, developments of the simulation physics and some further tests will be required.</p>

Topics
  • impedance spectroscopy
  • surface
  • simulation
  • steel
  • acoustic emission