People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pickering, Simon G.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2017Distance Estimation by Fusing Radar and Monocular Camera with Kalman Filter
- 2017Nonlinear imaging of damage in composite structures using sparse ultrasonic sensor arrayscitations
- 2014Nonlinear damage detection in composite structures using bispectral analysiscitations
- 2014Analysis of the delamination detection capabilities of pulse stimulated thermographic nondestructive testing techniques
- 2014Failure analysis of impact-damaged/hygrothermally aged fiber-reinforced polymer matrix composite joints subjected to bend loading
- 2014Analysis of the defect detection capabilities of pulse stimulated thermographic NDE techniquescitations
- 2013Transient thermography testing of unpainted thermal barrier coating (TBC) systemscitations
- 2013LED optical excitation for the long pulse and lock-in thermographic techniquescitations
- 2012Damage assessment of impact damages on CFRP with laser shearography
- 2011A comparison of the pulsed, lock-in and frequency modulated thermography nondestructive evaluation techniquescitations
- 2010Comparison of the defect detection capabilities of flash thermography and vibration excitation shearographycitations
Places of action
Organizations | Location | People |
---|
article
Comparison of the defect detection capabilities of flash thermography and vibration excitation shearography
Abstract
The defect detection capabilities of transient thermography and shearography have been compared using optimum excitation methods for each technique: short pulse heating for thermography and vibration excitation using a piezoelectric transducer for shearography. A signal-to-noise ratio and limit of detection analysis has been performed on defect images obtained by the two techniques using the different excitation methods. Test samples considered ill this paper are flat-plate samples made from aluminium, mild steel, stainless steel, CFRP and thermoplastic, containing flat-bottomed hole artificial defects of 20 mm diameter at depths ranging from 0.5 mm to 3.0 mm.