Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vodolazskiy, F. V.

  • Google
  • 2
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Determining temperatures and forces necessary to produce hot-pressed tubes out of titanium alloy PT-1M1citations
  • 2017Influence of Heating Temperature and Cooling Conditions on Structure and Properties of Two-Phase Titanium Alloy1citations

Places of action

Chart of shared publication
Gornostaeva, E. A.
1 / 1 shared
Kosmatskiy, Ya. I.
1 / 1 shared
Illarionov, A. G.
1 / 1 shared
Popov, Artemiy A.
1 / 2 shared
Zhloba, A. V.
1 / 1 shared
Chart of publication period
2021
2017

Co-Authors (by relevance)

  • Gornostaeva, E. A.
  • Kosmatskiy, Ya. I.
  • Illarionov, A. G.
  • Popov, Artemiy A.
  • Zhloba, A. V.
OrganizationsLocationPeople

article

Determining temperatures and forces necessary to produce hot-pressed tubes out of titanium alloy PT-1M

  • Vodolazskiy, F. V.
  • Gornostaeva, E. A.
  • Kosmatskiy, Ya. I.
  • Illarionov, A. G.
Abstract

<jats:p>This paper describes the results of a study that looked at alloy PT-1M that refers to the Ti – Al system and the α-alloys of titanium and is used to make tubes for various applications, including tubes that are hot-pressed as part of the manufacturing process. When developing a procedure for making hot-pressed tubes, one should first determine the temperatures and forces of the pressing operation that would ensure production of quality semifinished tubes. By means of test quenching operations, optical microscopy, thermodynamic analysis performed in ThermoCalc and physical modelling of the hot deformation process carried out in Gleeble 3800, as well as a series of mathematical calculations, the authors were able to determine the polymorphic α + β → β transformation temperature, as well as temperature regions of heating and forces that are necessary for hot pressing of the titanium alloy PT-1M for producing tubes of a given size at the TMK Group facilities. Having analyzed the temperature region of the α + β → β transformation in alloy PT-1M through thermodynamic calculation in ThermoCalc, the authors came up with recommended test temperatures for the PT-1M alloy for estimating the hot deformation forces required. The authors simulated the process of hot deformation by compressing specimens of the PT-1M alloy in the recommended temperature range, explained how the forces changed as a function of temperature and true deformation rate and determined the maximum forces and the strain-induced heating. The calculations show that, in the temperature range recommended for pressing tubes of a given size from PT-1M workpieces, the peak loads do not exceed the capacity of the pipe press in view. This research was funded by the Russian Science Foundation (Project No. 18-79-10107).</jats:p>

Topics
  • impedance spectroscopy
  • titanium
  • titanium alloy
  • optical microscopy
  • quenching
  • hot pressing