Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hamza, Faouzi

  • Google
  • 2
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Experimental investigation and numerical optimization of sheet metal forming limits during deep drawing process of DD14 steelcitations
  • 2017Study by Numerical Simulation of the Deep Drawing Parameters-Material during the Wheelbarrow Forming2citations

Places of action

Chart of shared publication
Boussaid, Ouzine
2 / 3 shared
Guedri, Abdelmoumene
1 / 3 shared
Hamadache, Hamid
1 / 1 shared
Tadjine, Kamel
1 / 1 shared
Chart of publication period
2024
2017

Co-Authors (by relevance)

  • Boussaid, Ouzine
  • Guedri, Abdelmoumene
  • Hamadache, Hamid
  • Tadjine, Kamel
OrganizationsLocationPeople

article

Experimental investigation and numerical optimization of sheet metal forming limits during deep drawing process of DD14 steel

  • Hamza, Faouzi
  • Boussaid, Ouzine
  • Guedri, Abdelmoumene
  • Hamadache, Hamid
Abstract

<jats:p>This work aims to experimentally study the deep drawability of DD14 hot-rolled steel sheets and to optimize numerically the material formability. The material anisotropy was confirmed by metallographic analysis of the material and tensile tests on specimens taken in three orientations with respect to the sheet rolling direction. Where the stress-strain curves show a sensitivity of material to the Piobert-Lüders phenomenon. The die pressure and the blank holder were considered as controlling factors on plastic instability and the success of the deep drawing operation. The forming limit curves (FLC) were plotted to highlight the different deformation modes that the sheet metal underwent during the deep drawing process. The collected deep-drawn parts observation shows severe plastic instability, until fracture. The initial plastic anisotropy is determined by the Hill48 quadratic criterion and the work hardening by the Hollomon power law. It results, during the experimental tests, that the front bottom corners of the deep drawn part are the areas at high risk of damage. The various numerical simulation scenarios followed by comparisons with the experimental results, allowed us to confirm the optimum conditions that minimize the material's plastic instability risks, forming operation “Step” and BHP “Amplitude”.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • simulation
  • steel
  • stress-strain curve
  • drawing