Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Savitskaya, Irina S.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Morphological and Physicochemical Properties of Nanostructured Cellulose Obtained through Chemical and Biological Methodscitations

Places of action

Chart of shared publication
Zhantlessova, Sirina D.
1 / 1 shared
Smagulova, Gaukhar T.
1 / 1 shared
Vassilyeva, Natalia
1 / 1 shared
Mansurov, Zulkhair A.
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Zhantlessova, Sirina D.
  • Smagulova, Gaukhar T.
  • Vassilyeva, Natalia
  • Mansurov, Zulkhair A.
OrganizationsLocationPeople

article

Morphological and Physicochemical Properties of Nanostructured Cellulose Obtained through Chemical and Biological Methods

  • Zhantlessova, Sirina D.
  • Smagulova, Gaukhar T.
  • Vassilyeva, Natalia
  • Savitskaya, Irina S.
  • Mansurov, Zulkhair A.
Abstract

<jats:p>The authors obtained samples of chemically pure, crystalline, micro-and nanostructured cellulose of various modifications using two approaches - biological and chemical. They studied these cellulose samples via scanning electron microscopy (SEM), thermogravimetric analysis, and infrared (IR) spectroscopy. To prepare cellulose microcrystals, they used the mild acid treatment method based on glycerol-acid mixtures for treating cotton fibers. They showed that the chemical processing of cotton fiber ensured its dispersion with generation of microcrystals surrounded by a partially preserved amorphous shell. The authors produced bacterial cellulose (BC) films using the Komagataeibacter xylinus C3 strain in surface cultivation conditions. With a view of obtaining higher-quality SEM images, they applied chemical fixation of lipids and proteins with critical drying to fix the process of nanofiber synthesis by bacterial cells. The two-step fixation method helped find the fibrillar structure of a cellulose film, while the morphology of bacterial cells was not deformed. The authors made a comparative analysis of the IR spectroscopy results between chemically synthesized cellulose microcrystals and BC. The obtained cellulose samples do not contain lignin and hemicellulose, both samples are highly crystalline. The BC has an ordered structure, higher crystallinity and gets carbonized when exposed to air pyrolysis. A thermogravimetric analysis of the samples shows the absence of thermally stable impurities. Both cellulose samples of biological and chemical origin are thermally stable, and the initial decomposition temperature is high enough for cellulose materials. These results show that the authors have managed to create nanocellulose materials that might be potentially applied in various industries, such as pharmaceuticals, functional composites, engineering, etc. The paper contains 6 Figures, 2 Tables, 29 References. The Authors declare no conflict of interest.</jats:p>

Topics
  • pyrolysis
  • impedance spectroscopy
  • dispersion
  • surface
  • amorphous
  • scanning electron microscopy
  • composite
  • thermogravimetry
  • lignin
  • cellulose
  • crystallinity
  • drying
  • infrared spectroscopy