People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Maheswari, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
- 2023DESIGN OF A TRIPLE-BANDPASS FILTER USING A MODIFIED T-SHAPED RECTANGULAR COUPLED WITH A STEPPED IMPEDANCE RESONATOR FOR SMART PORTABLE COMMUNICATION DEVICE APPLICATIONS
- 2020Effect of Doping on the Morphological, Micro-Structural and Optical Properties of Cd<sub>1–(<i>x + y</i>)</sub>Mn<sub>x</sub>Fe<sub><i>y</i></sub>O Thin Filmscitations
Places of action
Organizations | Location | People |
---|
article
DESIGN OF A TRIPLE-BANDPASS FILTER USING A MODIFIED T-SHAPED RECTANGULAR COUPLED WITH A STEPPED IMPEDANCE RESONATOR FOR SMART PORTABLE COMMUNICATION DEVICE APPLICATIONS
Abstract
<jats:p>This paper presents a ground-breaking triple-bandpass filter design utilizing a modified T-shape rectangular coupled with a stepped impedance resonator (MTSR-CSIR) for smart portable communication device applications. The MTSR-CSIR filter operates at (2.2, 3.62 and 4.6) GHz, providing wide passbands in three operating modes. To achieve the optimal performance, the filter design is executed on a multi-layered liquid-crystal polymer (LCP) substrate with a thickness of 50 µm, dielectric constant of 2.9 and loss tangent of 0.002. Simulation results for the MTSR-CSIR filter demonstrate a high level of accuracy and consistency with the measurement results for the fabricated filter. The filter exhibits an excellent stopband rejection, low loss and compact size while maintaining high-performance levels. Its performance parameters, such as insertion loss, return loss and group delay, are considered to evaluate the filter’s performance. The results highlight the applicability of the MTSR-CSIR filter for smart portable communication devices.</jats:p>