People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krawczyńska, Agnieszka
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2020In vitro evaluation of degradable electrospun polylactic acid/bioactive calcium phosphate ormoglass scaffoldscitations
- 20203D DIC-assisted residual stress measurement in 316 LVM steel processed by HE and HPTcitations
- 2019New approach to amorphization of alloys with low glass forming ability via selective laser meltingcitations
- 2019Mechanical properties and corrosion resistance of hydrostatically extruded 316 LVM stainless steel after low-temperature plasma nitridingcitations
- 2019Analysis of the microstructure of an AZ31/AA1050/AA2519 laminate produced using the explosive-welding methodcitations
- 2018Microstructural characterization and residual stress distribution in a nanostructured austenitic stainless steelcitations
- 2018Formation of the Nitrided Layers on an Austenitic Stainless Steel with Different Grain Structurescitations
- 2017New synthesis route to decorate Li 4 Ti 5 O 12 grains with GO flakescitations
- 2017Mechanical properties and corrosion resistance of ultrafine grained austenitic stainless steel processed by hydrostatic extrusioncitations
- 2017Microstructure and mechanical properties investigation of CP titanium processed by selective laser melting (SLM)citations
- 2017Analysis of microstructural aspects of a hip stem failure made of the REX 734 stainless steelcitations
- 2017The effect of current types on the microstructure and corrosion properties of Ni/NANOAl2O3 composite coatings
- 2016STEM study of Li4Ti5O12 anode material modified with Ag nanoparticlescitations
- 2014Strength of nanostructured austenitic steel 316LN at cryogenic temperaturescitations
- 2013Strain relaxation and grain growth in 316LVM stainless steel annealed under pressure
Places of action
Organizations | Location | People |
---|
article
Analysis of the microstructure of an AZ31/AA1050/AA2519 laminate produced using the explosive-welding method
Abstract
Explosive welding is a solid-state process used for the metallurgical joining of two or more dissimilar metals. In this process, the energy of controlled detonation is utilized to accelerate one metal plate into another. As a result of the collision, an atomic bond is formed. This paper describes a study of a laminate based on the AZ31 magnesium alloy, the AA1050 aluminum alloy and the AA2519 aluminum alloy. The test material was obtained using the method of explosive welding in a direct configuration AZ31/AA2519, with the intermediate layer made of AA1050 alloy previously rolled on the AA2519. The microstructure of the bonds was evaluated using scanning electron (SEM) and transmission electron microscopes with the SAED technique, while the chemical composition was assessed using energy-dispersive spectroscopy (EDS). The mechanical properties were examined with mini-specimen tensile tests and microhardness measurements. Between the joined aluminum alloys, an oxide layer was observed. It was also reported that the obtained joint is free of brittle intermetallic phases.