People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Małek, Marcin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023Empirical Study on the Effect of Tungsten Carbide Grain Size on Wear Resistance, Cutting Temperature, Cutting Forces and Surface Finish in the Milling Process of 316L Stainless Steelcitations
- 2019Analysis of the microstructure of an AZ31/AA1050/AA2519 laminate produced using the explosive-welding methodcitations
- 2017Effect of adding water-based binders on the technological properties of ceramic slurries based on silicon carbide citations
- 2016Investigation of the Basic Properties of Ceramic Proppants in Raw State Obtained by the Method of Mechanical Granulationcitations
- 2016Selecting key parameters of the green pellets and lightweight ceramic proppants for enhanced shale gas exploitationcitations
- 2016Investigation of key parameters influence on properties of the green pellets and lightweight ceramic proppants obtained by mechanical granulation method citations
- 2016Characterization and evaluation properties of ceramic proppants used in the extraction of the unconventional hydrocarbons
- 2016Rheological properties of alumina ceramic slurries for ceramic shell-mould fabricationcitations
- 2016Optimizing the Lightweight Ceramic Proppants Propertiescitations
- 2016Technological Properties of Ceramic Slurries Based on Silicon Carbide with Poly(vinyl alcohol) Addition for Shell Moluds Fabrication in Precision Casting Processcitations
- 2016Experimental ceramic proppants characterization in the process of shale gas extraction
- 2015Studies of the properties of green ceramic proppants obtained by spray drying method
- 2015Study of deflocculation of white clay for obtaining ceramic proppants fabrication in spray dryer
- 2015Influence of deflocculant addition on rheological properties of the slurries based on bauxite
Places of action
Organizations | Location | People |
---|
article
Analysis of the microstructure of an AZ31/AA1050/AA2519 laminate produced using the explosive-welding method
Abstract
Explosive welding is a solid-state process used for the metallurgical joining of two or more dissimilar metals. In this process, the energy of controlled detonation is utilized to accelerate one metal plate into another. As a result of the collision, an atomic bond is formed. This paper describes a study of a laminate based on the AZ31 magnesium alloy, the AA1050 aluminum alloy and the AA2519 aluminum alloy. The test material was obtained using the method of explosive welding in a direct configuration AZ31/AA2519, with the intermediate layer made of AA1050 alloy previously rolled on the AA2519. The microstructure of the bonds was evaluated using scanning electron (SEM) and transmission electron microscopes with the SAED technique, while the chemical composition was assessed using energy-dispersive spectroscopy (EDS). The mechanical properties were examined with mini-specimen tensile tests and microhardness measurements. Between the joined aluminum alloys, an oxide layer was observed. It was also reported that the obtained joint is free of brittle intermetallic phases.