Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zhou, Zhaoxia

  • Google
  • 4
  • 31
  • 29

Loughborough University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Measuring coefficient of thermal expansion of materials of micrometre size using SEM/FIB microscope with in situ MEMS heating stage2citations
  • 2023Amorphous-crystalline nanostructured Nd-Fe-B permanent magnets using laser powder bed fusion: metallurgy and magnetic properties17citations
  • 2023Evolution and formation of dissimilar metal interface s in fusion welding10citations
  • 2016Demonstration of polycrystalline thin film coatings on glass for spin Seebeck energy harvesting - datasetcitations

Places of action

Chart of shared publication
Liu, Changqing
1 / 8 shared
Davis, Samuel
1 / 1 shared
Jolley, Kenny
1 / 1 shared
Zhou, Han
1 / 3 shared
Mcclintock, Andrew
1 / 1 shared
Wu, Houzheng
1 / 3 shared
Robertson, Stuart
1 / 1 shared
Doak, Scott
1 / 2 shared
Ashcroft, Ian
1 / 24 shared
Robertson, Stuart
2 / 4 shared
Moody, Mp
1 / 32 shared
Wu, Julan
1 / 1 shared
Aboulkhair, Nt
1 / 1 shared
Degano, Michele
1 / 5 shared
Bagot, Paul A. J.
1 / 15 shared
Hague, Rjm
1 / 2 shared
Mirihanage, Wajira
1 / 12 shared
Kindermann, Renan
1 / 1 shared
Shanthraj, Pratheek
1 / 57 shared
Smith, Michael
1 / 29 shared
English, Paul
1 / 3 shared
Atwood, Robert
1 / 8 shared
Roy, Matthew
1 / 29 shared
Flint, Thomas
1 / 5 shared
Yang, Lu
1 / 5 shared
Wu, Fan
1 / 7 shared
Zipfel, Jake
1 / 1 shared
Morrison, Kelly
1 / 2 shared
Caruana, Andrew
1 / 1 shared
Cropper, Michael
1 / 1 shared
West, Geoff
1 / 6 shared
Chart of publication period
2024
2023
2016

Co-Authors (by relevance)

  • Liu, Changqing
  • Davis, Samuel
  • Jolley, Kenny
  • Zhou, Han
  • Mcclintock, Andrew
  • Wu, Houzheng
  • Robertson, Stuart
  • Doak, Scott
  • Ashcroft, Ian
  • Robertson, Stuart
  • Moody, Mp
  • Wu, Julan
  • Aboulkhair, Nt
  • Degano, Michele
  • Bagot, Paul A. J.
  • Hague, Rjm
  • Mirihanage, Wajira
  • Kindermann, Renan
  • Shanthraj, Pratheek
  • Smith, Michael
  • English, Paul
  • Atwood, Robert
  • Roy, Matthew
  • Flint, Thomas
  • Yang, Lu
  • Wu, Fan
  • Zipfel, Jake
  • Morrison, Kelly
  • Caruana, Andrew
  • Cropper, Michael
  • West, Geoff
OrganizationsLocationPeople

document

Demonstration of polycrystalline thin film coatings on glass for spin Seebeck energy harvesting - dataset

  • Zhou, Zhaoxia
  • Zipfel, Jake
  • Morrison, Kelly
  • Caruana, Andrew
  • Cropper, Michael
  • West, Geoff
Abstract

Zip file with all raw XRD, XRR, transport data.Origin project(s) containing raw and processed data for related publication.<br>Figure 1 was schematic only and not included here.Figure 2 and Figure S2 are in the same origin project (simple and extended TEM data).<br>Figure captions:Figure 2 TEM analysis of SSE5a. a) &amp; b) STEM/BF and HAADF images of the thin film, respectively. c) Conventional HREM of the PM Pt layer. d) EDX line-scan performed perpendicular to the interfaces of the layers.Figure 3 Summary of the magnetic, electric and thermal properties. a) Spin Seebeck voltage, <i>V<sub>ISHE</sub></i> (symbols), as a function of applied magnetic field plotted alongside magnetic data (line). b) Resistivity of the devices as a function of <i>t<sub>PM</sub></i>. c) Normalised spin Seebeck voltage, <i>S<sub>SSE</sub></i>, as a function of <i>t<sub>PM</sub></i>, plotted alongside simulated <i>S<sub>SSE</sub></i> (<i>θ<sub>SH</sub></i> = 0.1, <i>λ<sub>SD</sub></i> = 2 nm, <i>M<sub>s</sub></i> = 90 Am<sup>2</sup>/kg, D = 71x10<sup>41</sup> Jm<sup>2</sup>[19], <i>g<sub>r</sub></i> = 1,3 &amp; 5x10<sup>18</sup> m<sup>-2</sup>[20]). d) Definition of the parameters used to describe heat flow, (e) &amp; (f) Change in <i>ΔT<sub>2</sub></i>, and <i>S<sub>SSE</sub></i> with substrate's thermal conductivity, <i>κ<sub>3</sub></i>.Figure S1 Characterisation of the Fe<sub>3</sub>O<sub>4</sub> film. a) SQUID magnetometry above and below the Verwey transition, <i>T<sub>V</sub></i>. b) Resistivity as a function of temperature. c) XRD of a set of 4 separately prepared Fe<sub>3</sub>O<sub>4</sub> films. The inset shows a close-up of the (311), (222) peaks. d) Example XRR data (symbols) and fit (solid line), indicating thickness = 79 nm, roughness = 1.5 nm.Figure S2 TEM analysis of SSE5a. a) &amp; b) STEM/BF and HAADF images of the thin film, respectively. c) Conventional HREM of the PM Pt layer. d) &amp; e) STEM/BF image of the thin film stack and corresponding EDX line-scan performed perpendicular to the interfaces of the layers, respectively, and f) schematic of the grain growth described in the text.Figure S3 Characteristics of the bilayer film. a) XRD of SSE5a (2.5 nm Pt) and SSE20a (7.3 nm Pt). Inset shows a close-up of the Pt peak. b) XRR fit of SSE5a; Pt thickness = 2.5 nm, roughness = 2 nm.Figure S4 Example spin Seebeck measurement for SSE7a (<i>t<sub>PM</sub></i> = 3.2 nm) measured in fixed field as a function of temperature difference. Note that the sign...

Topics
  • grain
  • resistivity
  • x-ray diffraction
  • thin film
  • glass
  • glass
  • transmission electron microscopy
  • Energy-dispersive X-ray spectroscopy
  • thermal conductivity
  • additive manufacturing
  • grain growth