People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oti, Jonathan
University of South Wales
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Development of low carbon concrete and prospective of geopolymer concrete using lightweight coarse aggregate and cement replacement materialscitations
- 2023Physico-Mechanical Evaluation of Geopolymer Concrete Activated by Sodium Hydroxide and Silica Fume-Synthesised Sodium Silicate Solutioncitations
- 2022Performance of sustainable road pavements founded on clay subgrades treated with eco-friendly cementitious materialscitations
- 2022Evaluation of the structural performance of low carbon concretecitations
- 2020Mechanical properties and microstructure of fibre-reinforced clay blended with by-product cementitious materialscitations
- 2016Engineering Properties of Concrete made with Brick Dust Waste
- 2015Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius
- 2015Development of stabilised brick and mortar using biomass wastecitations
- 2015The Use of Palm Kernel Shell and Ash for Concrete Production
- 2012Stabilised unfired clay bricks for environmental and sustainable usecitations
- 2012Designed non-fired clay mixes for sustainable and low carbon usecitations
- 2010Freeze-thaw of stabilised clay brickcitations
- 2010Unfired clay masonry bricks incorporating slate wastecitations
- 2010Design thermal values for unfired clay brickscitations
- 2010Engineering properties of concrete made with slate wastecitations
- 2010Sustainable masonry mortar for brick joint and plaster in the UKcitations
- 2009Engineering properties of unfired clay masonry brickscitations
- 2009Compressive strength and microstructural analysis of unfired clay masonry brickscitations
- 2009Unfired clay bricks: from laboratory to industrial productioncitations
- 2008Using Slag for Unfired-Clay Masonry-Brickscitations
- 2008Innovative Building Materials: Manufactured Bricks Using By-products of an Industrial Process
- 2008Developing unfired stabilised building materials in the UKcitations
Places of action
Organizations | Location | People |
---|
article
Freeze-thaw of stabilised clay brick
Abstract
This paper reports on freezing and thawing of stabilised clay brick incorporating a latent hydraulic binder. The latent hydraulic binder used for the stabilised clay bricks is an industrial by-product (slag) arising as an inherent consequence of iron production. Laboratory and industrial-scale masonry bricks were produced. In order to improve on the cementitious properties of the latent hydraulic binder, between 1•4 to 2•6% of lime was used as an activator. The brick specimens were moist cured at a room temperature of about 20°C for between 3 and 90 days before testing for compressive strength. Since the major factor influencing the durability of clay masonry units is the degree to which the clay masonry unit becomes saturated with water, the durability assessment of the unfired bricks was carried out by means of 24 h repeated freezing/thawing cycles. The results showed that the compressive strength values of the industrial-scale bricks were higher than those of the laboratory bricks. The results of the freeze-thaw suggest that both the laboratory and industrial unfired clay bricks were able to withstand 100 (24 h) repeated freeze-thaw cycles. These results gave an indication of the feasibility of a durable stabilised clay brick incorporating a lime-activated latent hydraulic binder.