People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kinuthia, John
University of South Wales
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (25/25 displayed)
- 2023Derivation and Internal Validation of a Risk Score for Predicting Chlamydia trachomatis Infection in Kenyan Women Planning Conception
- 2023Physico-Mechanical Evaluation of Geopolymer Concrete Activated by Sodium Hydroxide and Silica Fume-Synthesised Sodium Silicate Solutioncitations
- 2022Opportunities and Challenges to Emergency Department-Based HIV Testing Services and Self-Testing Programs: A Qualitative Study of Healthcare Providers and Patients in Kenyacitations
- 2022The cost of implementing the Systems Analysis and Improvement Approach for a cluster randomized trial integrating HIV testing into family planning services in Mombasa County, Kenyacitations
- 2022Effects of Lysinibacillus sphaericus on Physicomechanical and Chemical Performance of OPC Blended with Natural Tuff and Pulverized Fly Ash
- 2021Influences on Early Discontinuation and Persistence of Daily Oral PrEP Use Among Kenyan Adolescent Girls and Young Women: A Qualitative Evaluation From a PrEP Implementation Programcitations
- 2016Strength and environmental evaluation of stabilised Clay-PFA eco-friendly brickscitations
- 2016Unfired clay materials and constructioncitations
- 2016Engineering Properties of Concrete made with Brick Dust Waste
- 2015Heating and Cooling Scenario of Blended Concrete Subjected to 780 Degrees Celsius
- 2015Development of stabilised brick and mortar using biomass wastecitations
- 2015The Use of Palm Kernel Shell and Ash for Concrete Production
- 2012Stabilised unfired clay bricks for environmental and sustainable usecitations
- 2012Designed non-fired clay mixes for sustainable and low carbon usecitations
- 2010Freeze-thaw of stabilised clay brickcitations
- 2010Unfired clay masonry bricks incorporating slate wastecitations
- 2010Design thermal values for unfired clay brickscitations
- 2010Engineering properties of concrete made with slate wastecitations
- 2010Sustainable masonry mortar for brick joint and plaster in the UKcitations
- 2009Engineering properties of unfired clay masonry brickscitations
- 2009Compressive strength and microstructural analysis of unfired clay masonry brickscitations
- 2009Unfired clay bricks: from laboratory to industrial productioncitations
- 2008Using Slag for Unfired-Clay Masonry-Brickscitations
- 2008Innovative Building Materials: Manufactured Bricks Using By-products of an Industrial Process
- 2008Developing unfired stabilised building materials in the UKcitations
Places of action
Organizations | Location | People |
---|
article
Freeze-thaw of stabilised clay brick
Abstract
This paper reports on freezing and thawing of stabilised clay brick incorporating a latent hydraulic binder. The latent hydraulic binder used for the stabilised clay bricks is an industrial by-product (slag) arising as an inherent consequence of iron production. Laboratory and industrial-scale masonry bricks were produced. In order to improve on the cementitious properties of the latent hydraulic binder, between 1•4 to 2•6% of lime was used as an activator. The brick specimens were moist cured at a room temperature of about 20°C for between 3 and 90 days before testing for compressive strength. Since the major factor influencing the durability of clay masonry units is the degree to which the clay masonry unit becomes saturated with water, the durability assessment of the unfired bricks was carried out by means of 24 h repeated freezing/thawing cycles. The results showed that the compressive strength values of the industrial-scale bricks were higher than those of the laboratory bricks. The results of the freeze-thaw suggest that both the laboratory and industrial unfired clay bricks were able to withstand 100 (24 h) repeated freeze-thaw cycles. These results gave an indication of the feasibility of a durable stabilised clay brick incorporating a lime-activated latent hydraulic binder.