Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jensen, U. G.

  • Google
  • 2
  • 4
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2009Shear Test on RC Elements with Circular Cross Section2citations
  • 2009Shear strength prediction of circular RC members by the crack sliding model17citations

Places of action

Chart of shared publication
Maagaard, J.
1 / 1 shared
Fabrin, L.
1 / 1 shared
Joergensen, H. B.
1 / 2 shared
Hoang, Linh Cao
2 / 31 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Maagaard, J.
  • Fabrin, L.
  • Joergensen, H. B.
  • Hoang, Linh Cao
OrganizationsLocationPeople

article

Shear strength prediction of circular RC members by the crack sliding model

  • Hoang, Linh Cao
  • Jensen, U. G.
Abstract

Reinforced concrete members with circular cross-section are widely used in bridge engineering, either as piers or as piles to support pile caps. Such members are often subjected to combined shear, bending and axial loading. Compared with the overwhelming studies of shear in rectangular members, relatively few theoretical studies of the shear resistance of circular members can be found in the literature. This paper presents a model that can be used to predict the shear strength of circular members. The model is an extension of the plasticity-based crack sliding model originally developed for rectangular beams. Analytical solutions for simply supported and restrained members are presented. The results obtained by the model have been compared with a large number of tests. Satisfactory agreement has been found.

Topics
  • impedance spectroscopy
  • crack
  • strength
  • plasticity